
9 780262 048644

59000

US $90.00 / CAN $119.00

ISBN 978-0-262-04864-4

MULTI-AGENT
REINFORCEMENT
LE ARNING
FOUNDATIONS AND
MODERN APPROACHE S

Stefano V. Albrecht
Filippos Christianos
Lukas Schäfer

“marl-book-main” — 2025/6/18 — 20:07 — page 1 — #1

1

“marl-book-main” — 2025/6/18 — 20:07 — page a — #2

Praise for Multi-Agent Reinforcement Learning

“The authors meticulously bring reinforcement learning together with game theory to
provide a foundation for research and application of multi-agent reinforcement learning.
This book is the perfect starting point for a grounding in the field.”

– Andrew Barto, Professor Emeritus, University of Massachusetts Amherst

“Multi-agent reinforcement learning is well positioned to be the next white-hot area
of artificial intelligence and this book provides the essential background, concepts, and
insights for understanding this exciting and important area of research.”

– Michael L. Littman, Professor of Computer Science, Brown University

“This book is the first complete reference for the growing area of multi-agent rein-
forcement learning. It provides both an essential resource for newcomers to the field;
and a valuable perspective for established researchers.”

– Peter Stone, Professor of Computer Science, The University of Texas at Austin

“A landmark textbook to multiagent reinforcement learning, combining game-
theoretic foundations with state-of-the-art deep learning. This essential textbook delivers
fundamental insights for newcomers, experts and practitioners, featuring real-world
applications and advanced algorithms.”

– Karl Tuyls, Director of AI Research, Meta AI and Professor of Computer Science,
University of Liverpool

“This will become the standard text of the emerging field of multiagent reinforcement
learning. It builds from foundational ideas, incorporating recent breakthroughs in deep
learning. This book will help accelerate theoretical and practical progress.”

– Mykel J. Kochenderfer, Professor of Aeronautics and Astronautics, Stanford
University

“marl-book-main” — 2025/6/18 — 20:07 — page b — #3

“marl-book-main” — 2025/6/18 — 20:07 — page i — #4

Multi-Agent Reinforcement Learning

“marl-book-main” — 2025/6/18 — 20:07 — page ii — #5

“marl-book-main” — 2025/6/18 — 20:07 — page iii — #6

Multi-Agent Reinforcement Learning

Foundations and Modern Approaches

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer

The MIT Press
Cambridge, Massachusetts
London, England

“marl-book-main” — 2025/6/18 — 20:07 — page iv — #7

© 2024 Massachusetts Institute of Technology

This work is subject to a Creative Commons CC-BY-NC-ND license.

This license applies only to the work in full and not to any components included with
permission. Subject to such license, all rights are reserved. No part of this book may be
used to train artificial intelligence systems without permission in writing from the MIT
Press.

The MIT Press would like to thank the anonymous peer reviewers who provided
comments on drafts of this book. The generous work of academic experts is essential for
establishing the authority and quality of our publications. We acknowledge with
gratitude the contributions of these otherwise uncredited readers.

This book was set in Times New Roman by Stefano V. Albrecht, Filippos Christianos,
and Lukas Schäfer. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Albrecht, Stefano V., author. | Christianos, Filippos, author. |
Schäfer, Lukas, author.

Title: Multi-agent reinforcement learning : foundations and modern
approaches / Stefano V. Albrecht, Filippos Christianos, Lukas Schäfer,
The University of Edinburgh, United Kingdom.

Description: Cambridge, Massachusetts : The MIT Press, [2024] | Includes
bibliographical references and index.

Identifiers: LCCN 2024002669 (print) | LCCN 2024002670 (ebook) | ISBN
9780262049375 (hardcover) | ISBN 9780262380508 (epub) | ISBN
9780262380515 (pdf)

Subjects: LCSH: Reinforcement learning. | Intelligent agents (Computer
software)

Classification: LCC Q325.6 .A43 2024 (print) | LCC Q325.6 (ebook) | DDC
006.3/1–dc23/eng/20240412

LC record available at https://lccn.loc.gov/2024002669
LC ebook record available at https://lccn.loc.gov/2024002670

“marl-book-main” — 2025/6/18 — 20:07 — page v — #8

Für A.H.A. und R.J.A. — träumt groß, strebt nach euren Zielen, geht voraus.
For A.E.A. — this book would not be here without you.
–S.V.A.

Στη Δάφνη — για την αστείρευτη αγάπη και την υποστήριξη της στη

συγγραφή ενός βιβλίου που πιθανώς να μην διαβάσει ποτέ.

–F.C.

Für Jonas, Daniel, Annette und Stefan — für eure Liebe, Unterstützung und die
Neugierde, die ihr in mir geweckt habt.
–L.S.

“marl-book-main” — 2025/6/18 — 20:07 — page vi — #9

“marl-book-main” — 2025/6/18 — 20:07 — page vii — #10

Contents

Summary of Notation xiii

List of Figures xvii

Preface xxiii

1 Introduction 1
1.1 Multi-Agent Systems 2
1.2 Multi-Agent Reinforcement Learning 6
1.3 Application Examples 9

1.3.1 Multi-Robot Warehouse Management 9
1.3.2 Competitive Play in Board Games and Video Games 10
1.3.3 Autonomous Driving 11
1.3.4 Automated Trading in Electronic Markets 11

1.4 Challenges of MARL 12
1.5 Agendas of MARL 13
1.6 Book Contents and Structure 15

I FOUNDATIONS OF MULTI-AGENT REINFORCEMENT
LEARNING 17

2 Reinforcement Learning 19
2.1 General Definition 20
2.2 Markov Decision Processes 22
2.3 Expected Discounted Returns and Optimal Policies 24
2.4 Value Functions and Bellman Equation 26
2.5 Dynamic Programming 29
2.6 Temporal-Difference Learning 32
2.7 Evaluation with Learning Curves 36

“marl-book-main” — 2025/6/18 — 20:07 — page viii — #11

viii Contents

2.8 Equivalence ofR(s, a, s′) andR(s, a) 39
2.9 Summary 40

3 Games: Models of Multi-Agent Interaction 43
3.1 Normal-Form Games 44
3.2 Repeated Normal-Form Games 46
3.3 Stochastic Games 47
3.4 Partially Observable Stochastic Games 49

3.4.1 Belief States and Filtering 53
3.5 Modeling Communication 55
3.6 Knowledge Assumptions in Games 56
3.7 Dictionary: Reinforcement Learning↔ Game Theory 58
3.8 Summary 58

4 Solution Concepts for Games 61
4.1 Joint Policy and Expected Return 62
4.2 Best Response 65
4.3 Minimax 65

4.3.1 Minimax Solution via Linear Programming 67
4.4 Nash Equilibrium 68
4.5 ϵ-Nash Equilibrium 70
4.6 (Coarse) Correlated Equilibrium 71

4.6.1 Correlated Equilibrium via Linear Programming 74
4.7 Conceptual Limitations of Equilibrium Solutions 75
4.8 Pareto Optimality 76
4.9 Social Welfare and Fairness 78
4.10 No-Regret 81
4.11 The Complexity of Computing Equilibria 83

4.11.1 PPAD Complexity Class 84
4.11.2 Computing ϵ-Nash Equilibrium Is PPAD-Complete 86

4.12 Summary 87

5 Multi-Agent Reinforcement Learning in Games: First Steps
and Challenges 89
5.1 General Learning Process 90
5.2 Convergence Types 92
5.3 Single-Agent RL Reductions 95

5.3.1 Central Learning 95
5.3.2 Independent Learning 97
5.3.3 Example: Level-Based Foraging 99

“marl-book-main” — 2025/6/18 — 20:07 — page ix — #12

Contents ix

5.4 Challenges of MARL 102
5.4.1 Non-Stationarity 102
5.4.2 Equilibrium Selection 104
5.4.3 Multi-Agent Credit Assignment 106
5.4.4 Scaling to Many Agents 108

5.5 What Algorithms Do Agents Use? 109
5.5.1 Self-Play 110
5.5.2 Mixed-Play 111

5.6 Summary 112

6 Multi-Agent Reinforcement Learning: Foundational Algorithms 115
6.1 Dynamic Programming for Games: Value Iteration 116
6.2 Temporal-Difference Learning for Games: Joint-Action

Learning 118
6.2.1 Minimax Q-Learning 121
6.2.2 Nash Q-Learning 123
6.2.3 Correlated Q-Learning 124
6.2.4 Limitations of Joint-Action Learning 125

6.3 Agent Modeling 127
6.3.1 Fictitious Play 128
6.3.2 Joint-Action Learning with Agent Modeling 131
6.3.3 Bayesian Learning and Value of Information 134

6.4 Policy-Based Learning 140
6.4.1 Gradient Ascent in Expected Reward 141
6.4.2 Learning Dynamics of Infinitesimal Gradient Ascent 142
6.4.3 Win or Learn Fast 145
6.4.4 Win or Learn Fast with Policy Hill Climbing 147
6.4.5 Generalized Infinitesimal Gradient Ascent 149

6.5 No-Regret Learning 151
6.5.1 Unconditional and Conditional Regret Matching 151
6.5.2 Convergence of Regret Matching 153

6.6 Summary 156

II MULTI-AGENT DEEP REINFORCEMENT LEARNING:
ALGORITHMS AND PRACTICE 159

7 Deep Learning 161
7.1 Function Approximation for Reinforcement Learning 161
7.2 Linear Function Approximation 163
7.3 Feedforward Neural Networks 165

“marl-book-main” — 2025/6/18 — 20:07 — page x — #13

x Contents

7.3.1 Neural Unit 166
7.3.2 Activation Functions 167
7.3.3 Composing a Network from Layers and Units 168

7.4 Gradient-Based Optimization 169
7.4.1 Loss Function 170
7.4.2 Gradient Descent 171
7.4.3 Backpropagation 174

7.5 Convolutional and Recurrent Neural Networks 175
7.5.1 Learning from Images—Exploiting Spatial

Relationships in Data 176
7.5.2 Learning from Sequences with Memory 178

7.6 Summary 180

8 Deep Reinforcement Learning 183
8.1 Deep Value Function Approximation 184

8.1.1 Deep Q-Learning—What Can Go Wrong? 184
8.1.2 Moving Target Problem 187
8.1.3 Breaking Correlations 188
8.1.4 Putting It All Together: Deep Q-Networks 192
8.1.5 Beyond Deep Q-Networks 193

8.2 Policy Gradient Algorithms 195
8.2.1 Advantages of Learning a Policy 195
8.2.2 Policy Gradient Theorem 197
8.2.3 REINFORCE: Monte Carlo Policy Gradient 200
8.2.4 Actor-Critic Algorithms 202
8.2.5 A2C: Advantage Actor-Critic 204
8.2.6 PPO: Proximal Policy Optimization 207
8.2.7 Policy Gradient Algorithms in Practice 209
8.2.8 Concurrent Training of Policies 210

8.3 Observations, States, and Histories in Practice 215
8.4 Summary 217

9 Multi-Agent Deep Reinforcement Learning 219
9.1 Training and Execution Modes 220

9.1.1 Centralized Training and Execution 220
9.1.2 Decentralized Training and Execution 221
9.1.3 Centralized Training with Decentralized Execution 222

9.2 Notation for Multi-Agent Deep Reinforcement Learning 222
9.3 Independent Learning 223

9.3.1 Independent Value-Based Learning 224

“marl-book-main” — 2025/6/18 — 20:07 — page xi — #14

Contents xi

9.3.2 Independent Policy Gradient Methods 226
9.3.3 Example: Deep Independent Learning in a Large

Task 228
9.4 Multi-Agent Policy Gradient Algorithms 230

9.4.1 Multi-Agent Policy Gradient Theorem 231
9.4.2 Centralized Critics 232
9.4.3 Centralized Action-Value Critics 236
9.4.4 Counterfactual Action-Value Estimation 237
9.4.5 Equilibrium Selection with Centralized Action-Value

Critics 239
9.5 Value Decomposition in Common-Reward Games 242

9.5.1 Individual-Global-Max Property 244
9.5.2 Linear Value Decomposition 246
9.5.3 Monotonic Value Decomposition 249
9.5.4 Value Decomposition in Practice 255
9.5.5 Beyond Monotonic Value Decomposition 261

9.6 Agent Modeling with Neural Networks 266
9.6.1 Joint-Action Learning with Deep Agent Models 267
9.6.2 Learning Representations of Agent Policies 271

9.7 Environments with Homogeneous Agents 274
9.7.1 Parameter Sharing 276
9.7.2 Experience Sharing 278

9.8 Policy Self-Play in Zero-Sum Games 281
9.8.1 Monte Carlo Tree Search 283
9.8.2 Self-Play MCTS 286
9.8.3 Self-Play MCTS with Deep Neural Networks:

AlphaZero 288
9.9 Population-Based Training 290

9.9.1 Policy Space Response Oracles 292
9.9.2 Convergence of PSRO 295
9.9.3 Grandmaster Level in StarCraft II: AlphaStar 298

9.10 Summary 301

10 Multi-Agent Deep Reinforcement Learning in Practice 305
10.1 The Agent-Environment Interface 305
10.2 MARL Neural Networks in PyTorch 307

10.2.1 Seamless Parameter Sharing Implementation 309
10.2.2 Defining the Models: An Example with IDQN 310

10.3 Centralized Value Functions 312
10.4 Value Decomposition 313

“marl-book-main” — 2025/6/18 — 20:07 — page xii — #15

xii Contents

10.5 Practical Tips for MARL Algorithms 313
10.5.1 Stacking Time Steps vs. Recurrent Network vs.

Neither 314
10.5.2 Standardizing Rewards 314
10.5.3 Centralized Optimization 315

10.6 Presentation of Experimental Results 316
10.6.1 Learning Curves 316
10.6.2 Hyperparameter Search 318

11 Multi-Agent Environments 319
11.1 Criteria for Choosing Environments 320
11.2 Structurally Distinct 2× 2 Matrix Games 321

11.2.1 No-Conflict Games 321
11.2.2 Conflict Games 322

11.3 Complex Environments 323
11.3.1 Level-Based Foraging 324
11.3.2 Multi-Agent Particle Environment 326
11.3.3 StarCraft Multi-Agent Challenge 327
11.3.4 Multi-Robot Warehouse 328
11.3.5 Google Research Football 329
11.3.6 Hanabi 330
11.3.7 Overcooked 331

11.4 Environment Collections 332
11.4.1 Melting Pot 333
11.4.2 OpenSpiel 334
11.4.3 Petting Zoo 335

A Surveys on Multi-Agent Reinforcement Learning 337

References 341

Index 363

“marl-book-main” — 2025/6/18 — 20:07 — page xiii — #16

Summary of Notation

Sets are denoted with capital letters.
Elements of sets are denoted with lower-case letters.
Time index t (or τ) is shown in superscript (e.g., st denotes state at time t).
Agent index is shown in subscript (e.g., ai denotes action of agent i).

The most common symbols used in the book are listed below. Specific sections
may use additional notation.

General
R set of real numbers
∝ proportional to
x⊤ transpose of a vector x
X⊤ transpose of a matrix X
Pr probability
Pr(x | y) conditional probability of x given y
Ep[x] expectation of x under probability distribution p
x∼ p x sampled according to probability distribution p
x← y assign value y to variable x
D training data set
∂f
∂x derivative of function f with respect to x
∇ gradient
⟨a, b, c, ...⟩ concatenation of inputs a, b, c, ... into tuple (a, b, c, ...)
[x]1 indicator function: returns 1 if x is true, otherwise returns 0

Game Model
I set of agents
i, j agent subscripts
−i subscript to denote the tuple ⟨all agents except agent i⟩
S, S̄ state space, set of terminal states
s state
O, Oi (joint-) observation space, observation space of agent i
o, oi (joint) observation, observation of agent i
A, Ai (joint-) action space, action space of agent i
a, ai (joint) action, action of agent i

“marl-book-main” — 2025/6/18 — 20:07 — page xiv — #17

xiv SUMMARY OF NOTATION

r, ri (joint) reward, reward of agent i
µ initial state distribution
T state transition function
T̂ simulation/sampling model of state transitions
O,Oi observation function (of agent i)
R,Ri reward function (of agent i)
Γs normal-form game for state s

Policies, Returns, Values
Π,Πi (joint-) policy space, policy space of agent i
π,πi (joint) policy, policy of agent i
π∗ optimal policy, or equilibrium joint policy
H, Ĥ set of histories, set of full histories
h, hi joint-observation history, observation history of agent i
ĥ full history containing states, joint observations, joint actions
σ(ĥ) function returning joint-observation history from full history ĥ
γ discount factor
u, ui discounted return (for agent i)
U, Ui expected discounted return (for agent i)

(Multi-Agent) Reinforcement Learning
L learning algorithm
α learning rate
ϵ exploration rate
π̄i empirical action distribution, or averaged policy, of agent i
π̂j agent model for agent j
BRi set of best-response actions or policies for agent i
Vπ , Vπ

i state-value function (of agent i) under policy π
Qπ , Qπ

i action-value function (of agent i) under policy π
V∗, Q∗ optimal state/action-value function
Valuei return an equilibrium value for agent i in a normal-form game

Deep Learning
θ network parameters
f (x; θ) function f for input x with parameters θ
L(θ) loss function over parameters θ
B batch of data
B batch size, i.e., number of samples in a batch

(Multi-Agent) Deep Reinforcement Learning
θ, θi value function parameters (of agent i)

“marl-book-main” — 2025/6/18 — 20:07 — page xv — #18

SUMMARY OF NOTATION xv

ϕ,ϕi policy parameters (of agent i)
θ target network parameters
D,Di experience replay buffer (of agent i)
H entropy
z centralized information, e.g. the state of the environment

“marl-book-main” — 2025/6/18 — 20:07 — page xvi — #19

“marl-book-main” — 2025/6/18 — 20:07 — page xvii — #20

List of Figures

1.1 Schematic of a multi-agent system. 2

1.2 A level-based foraging task. 4

1.3 Schematic of multi-agent reinforcement learning. 6

1.4 Dimensions in multi-agent reinforcement learning. 8

2.1 Definition of a reinforcement learning problem. 20

2.2 Basic reinforcement learning loop for a single-agent system. 21

2.3 Mars Rover Markov decision process (MDP). 23

2.4 Sarsa and Q-learning algorithms in the Mars Rover problem. 37

3.1 Hierarchy of game models. 44

3.2 Three normal-form games with two agents (i.e., matrix games). 46

3.3 Three game models as directed cyclic graphs. 50

3.4 Level-based foraging environment with partial observability. 53

3.5 Synonymous terms in reinforcement learning and game theory. 59

4.1 Definition of a multi-agent reinforcement learning problem. 62

4.2 Matrix game in which ϵ-Nash equilibrium can be far from Nash
equilibrium. 71

4.3 Chicken matrix game. 73

4.4 Feasible joint rewards and Pareto frontier in Chicken game. 77

4.5 Feasible joint rewards and fairness-optimal outcomes in Battle of
the Sexes game. 80

4.6 Ten episodes between two agents in the non-repeated Prisoner’s
Dilemma matrix game. 82

4.7 Instances of END-OF-LINE problem. 85

5.1 General learning process in multi-agent reinforcement learning. 90

“marl-book-main” — 2025/6/18 — 20:07 — page xviii — #21

xviii List of Figures

5.2 Convergence of “infinitesimal” independent Q-learning (IQL). 99

5.3 A level-based foraging task with two agents. 100

5.4 Central and independent Q-learning in a level-based foraging task. 101

5.5 Evolving policies of two agents in Rock-Paper-Scissors with
WoLF-PHC. 103

5.6 Matrix games with multiple equilibria. 105

5.7 A level-based foraging task with three agents. 107

6.1 Simplified grid-world soccer game. 122

6.2 Minimax Q-learning won episodes and episode length in soccer
game. 122

6.3 NoSDE (“No Stationary Deterministic Equilibrium”) game. 126

6.4 General agent model. 128

6.5 Evolving policies of two agents in Rock-Paper-Scissors with
fictitious play. 129

6.6 First ten episodes in the non-repeated Rock-Paper-Scissors game
when both agents use fictitious play. 130

6.7 Joint-action learning with agent modeling in a level-based foraging
task. 133

6.8 Two agent models for Prisoner’s Dilemma. 135

6.9 Value of information in the Prisoner’s Dilemma example. 136

6.10 Dirichlet distributions in the Rock-Paper-Scissors non-repeated
game. 137

6.11 Joint policy (α,β) learned by Infinitesimal Gradient Ascent (IGA)
in unconstrained space. 144

6.12 General form of joint policy (α,β) trajectory when using
WoLF-IGA. 146

6.13 Evolving policies of two agents in Rock-Paper-Scissors with
WoLF-PHC. 149

6.14 Evolving policies of two agents in Rock-Paper-Scissors using
unconditional regret matching. 155

6.15 Unconditional regrets in Rock-Paper-Scissors using unconditional
regret matching. 156

7.1 Single-agent maze environment. 162

7.2 Feedforward neural network with three layers. 165

“marl-book-main” — 2025/6/18 — 20:07 — page xix — #22

List of Figures xix

7.3 Single unit of a feedforward neural network. 166

7.4 Summary of commonly used activation functions for input x∈R. 167

7.5 Common non-linear activation functions defined in Figure 7.4. 168

7.6 Training loop for gradient-based optimization of a neural network. 169

7.7 Comparison of gradient-based optimization algorithms. 173

7.8 Convolutional neural network. 177

7.9 Recurrent neural network. 179

8.1 Neural network architecture for action-value functions. 185

8.2 Correlations of consecutive experiences. 190

8.3 Single-agent level-based foraging environment and learning curves
for value-based deep RL algorithms. 192

8.4 Comparison of ϵ-greedy and softmax policies. 196

8.5 Variance and bias trade-off of N-step returns. 204

8.6 Learning curves for policy gradient RL algorithms in single-agent
level-based foraging environment. 210

8.7 Synchronous data collection for parallel training of the agent. 211

8.8 Learning curves for A2C with synchronous data collection in
single-agent level-based foraging environment. 213

8.9 Asynchronous training for parallel optimization of the agent. 214

9.1 Learning curves of IA2C in the level-based foraging environment. 230

9.2 Architecture of a centralized critic. 233

9.3 Speaker-listener game and learning curve for A2C with and
without a centralized critic. 235

9.4 Architecture of a centralized action-value critic. 237

9.5 The Stag Hunt and Climbing matrix games. 240

9.6 Learning curves comparing A2C with centralized critic and Pareto
actor-critic. 242

9.7 A coordination graph. 244

9.8 Network architectures of VDN and QMIX. 250

9.9 Value decomposition format. 255

9.10 Linearly-decomposable matrix game with the learned value
decompositions of VDN and QMIX. 256

9.11 Monotonically-decomposable matrix game with the learned value
decompositions of VDN and QMIX. 257

“marl-book-main” — 2025/6/18 — 20:07 — page xx — #23

xx List of Figures

9.12 QMIX mixing function in the monotonic matrix game. 257

9.13 Two-step common-reward stochastic game. 258

9.14 Learned value decompositions of VDN and QMIX in two-step
common-reward stochastic game. 258

9.15 Learned value decomposition of VDN and QMIX in the Climbing
game. 259

9.16 Level-based foraging task and learning curves comparing IDQN,
VDN, and QMIX. 260

9.17 QTRAN value decomposition in the linear matrix game. 264

9.18 QTRAN value decomposition in the monotonic matrix game. 264

9.19 QTRAN value decomposition in the Climbing game. 265

9.20 Level-based foraging environment and learning curve for IDQN
and deep JAL-AM. 270

9.21 Encoder-decoder architecture to learn representations of other
agents’ policies. 271

9.22 Level-based foraging environment and learning curve for
centralized A2C with and without representation-based agent
models. 273

9.23 Environments with strongly and weakly homogeneous agents. 276

9.24 Learning curves for the independent actor-critic algorithm in the
level-based foraging environment. 277

9.25 Tree expansion and backpropagation in MCTS. 285

9.26 State transformation in chess. 287

9.27 AlphaZero match results. 290

9.28 Policy space response oracles (PSRO) steps. 294

9.29 PSRO in the non-repeated Rock-Paper-Scissors game. 297

10.1 Architecture for an independent Deep Q-networks algorithm. 310

10.2 Exemplary learning curves in single-agent and multi-agent
reinforcement learning. 317

11.1 List of multi-agent environments with their properties. 324

11.2 Two level-based foraging environments. 325

11.3 Three multi-agent particle environment tasks. 326

11.4 StarCraft Multi-Agent Challenge tasks. 328

11.5 Three multi-robot warehouse tasks. 329

“marl-book-main” — 2025/6/18 — 20:07 — page xxi — #24

List of Figures xxi

11.6 Two Google Research Football tasks. 330

11.7 Cooking Zoo. 332

11.8 Four Melting Pot environments. 333

11.9 Three Petting Zoo environments. 334

“marl-book-main” — 2025/6/18 — 20:07 — page xxii — #25

“marl-book-main” — 2025/6/18 — 20:07 — page xxiii — #26

Preface

Multi-agent reinforcement learning (MARL) is a varied and highly active field
of research. With the introduction of deep learning to MARL in the mid-2010s,
the field has seen an explosive growth of activity, and now all major artificial
intelligence and machine learning conferences routinely feature papers that
develop new MARL algorithms or apply MARL in some way. This steep
growth is also documented by the increasing number of survey papers that have
been published since, of which we list many in Chapter A.

In the wake of this growth, it became clear that the field needed a textbook to
provide a principled introduction to MARL. The present book is in part based
on the tutorial “Multiagent Learning: Foundations and Recent Trends” given by
Stefano V. Albrecht and Peter Stone at the 2017 International Joint Conference
on Artificial Intelligence in Melbourne, Australia. The book was written to
provide a basic introduction to the models, solution concepts, algorithmic
ideas, and technical challenges in MARL, and to describe modern approaches
in MARL that integrate deep learning techniques to produce powerful new
algorithms. In essence, we believe that the materials covered in this book
should be known by every MARL researcher. In addition, the book aims to
give practical guidance for researchers and practitioners when using MARL
algorithms. To this end, the book comes with its own codebase written in the
Python programming language, which contains implementations of several
MARL algorithms discussed in this book. The primary purpose of the codebase
is to provide algorithm code that is self-contained and easy to read, to aid the
reader’s understanding. A dedicated chapter (Chapter 10) describes of how
these MARL algorithms are implemented in the codebase.

This book assumes that readers have an undergraduate-level background
in basic mathematics, including statistics, probability theory, linear algebra,
and calculus. A basic familiarity with programming concepts is required to
understand and use the codebase. In general, we recommend reading the book
chapters in the given sequence. For readers unfamiliar with reinforcement

“marl-book-main” — 2025/6/18 — 20:07 — page xxiv — #27

xxiv Preface

learning and deep learning, we provide the basics in Chapters 2, 7, and 8,
respectively. Readers who are already familiar with reinforcement learning
and deep (reinforcement) learning, and who want to quickly get going with
deep learning-based MARL algorithms, may read Chapter 3 and then skip
to Chapter 9 and onward. To aid lecturers in adopting this book, we have
developed lecture slides (available from the book’s website) that can be modified
as required to suit the course’s needs.

MARL has become a large field of research, and this book does not cover
all aspects of MARL. For instance, there is a growing body of work on using
communication in MARL, which is not covered in this book. This includes
questions such as how agents can learn to communicate robustly when commu-
nication channels are noisy and unreliable; and how agents may use MARL to
learn specialized communication protocols or languages for a given task. While
this book does not focus on communication in MARL, the models introduced
in this book are general enough to also represent communication actions (as
described in Section 3.5). There has also been research on using evolutionary
game theory for multi-agent learning, which is not covered in this book. (We
recommend the excellent survey of Bloembergen et al. (2015).) Finally, with the
steep rise of activity in MARL in recent years, it would be futile to write a book
that tries to keep up with new algorithms. We instead focus on the foundational
concepts and ideas in MARL, and refer to survey papers (including those listed
in Chapter A) for a more complete list of algorithm developments.

Acknowledgements: We are grateful to many people who have worked with us
or provided feedback during the writing of this book. Special thanks go to
Elizabeth Swayze and Matthew Valades from the MIT Press who diligently
guided us through the publication process. Many colleagues have provided
valuable feedback and suggestions, and we are grateful to all of them
(in alphabetical order): Christopher Amato, Ignacio Carlucho, Georgios
Chalkiadakis, Francesco Da Dalt, Sam Dauncey, Alex Davey, Bertrand
Decoster, Mhairi Dunion, Kousha Etessami, Aris Filos-Ratsikas, Elliot
Fosong, Amy Greenwald, Dongge Han, Josiah Hanna, Leonard Hinckeldey,
Sarah Keren, Mykel Kochenderfer, Marc Lanctot, Stefanos Leonardos,
Michael Littman, Luke Marris, Elle McFarlane, Trevor McInroe, Mahdi
Kazemi Moghaddam, Frans Oliehoek, Georgios Papoudakis, Tabish Rashid,
Michael Rovatsos, Rahat Santosh, Raul Steleac, Massimiliano Tamborski,
Kale-ab Tessera, Callum Tilbury, Jeroen van Riel, and Zhu Zheng. We also
thank the anonymous reviewers who reviewed the book for the MIT Press.
The Mars Rover MDP from Figure 2.3 is based on a similar MDP created
by Elliot Fosong and Adam Jelley for the reinforcement learning course at

“marl-book-main” — 2025/6/18 — 20:07 — page xxv — #28

Preface xxv

the University of Edinburgh. The images in Figure 4.4 and Figure 4.5(b)
were created for this book by Mahdi Kazemi Moghaddam. We are grateful
to Karl Tuyls for announcing this book in his keynote talk at the AAMAS
2023 conference in London (29 May–2 June, 2023), during which the first
preprint draft of the book was released.

Errata: Despite our best efforts, it is possible that some typos or imprecisions
may have gone unnoticed. If you detect any errors, we would be much
obliged if you could report them to us via e-mail at issues@marl-book.com.

Book website, codebase, slides: The full PDF version of this book and links
to accompanying materials, including the codebase and lecture slides, can
be found on the book website at www.marl-book.com.

February, 2024

Stefano V. Albrecht
Filippos Christianos
Lukas Schäfer

mailto:issues@marl-book.com
www.marl-book.com

“marl-book-main” — 2025/6/18 — 20:07 — page xxvi — #29

“marl-book-main” — 2025/6/18 — 20:07 — page 1 — #30

1 Introduction

Imagine a scenario in which a collective of autonomous agents, each capable
of making its own decisions, must interact in a shared environment to achieve
certain goals. The agents may have a shared goal, such as a fleet of mobile
robots whose task is to collect and deliver goods within a large warehouse or
a team of drones tasked with monitoring a power plant. The agents may also
have conflicting goals, such as agents trading goods in a virtual market in which
each agent seeks to maximize its own gains. Since we may not know how the
agents should interact to achieve their goals, we tell them to figure it out on
their own. Thus, the agents begin to try actions in their environment and collect
experiences about how the environment changes as a result of their actions, as
well as how the other agents behave. In time, the agents begin to learn various
concepts, such as skills needed to solve their task and, importantly, how to
coordinate their actions with other agents. They may even learn to develop a
shared language to enable communication between agents. Finally, the agents
reach a certain level of proficiency and have become experts at interacting
optimally to achieve their goals.

This exciting vision is, in a nutshell, what multi-agent reinforcement learning
(MARL) aims to achieve. MARL is based on reinforcement learning (RL), in
which agents learn optimal decision policies by trying actions and receiving
rewards, with the goal of choosing actions to maximize the sum of received
rewards over time. While in single-agent RL the focus is on learning an optimal
policy for a single agent, in MARL the focus is on learning optimal policies for
multiple agents and the unique challenges that arise in this learning process.

In this first chapter, we will begin to outline some of the underlying concepts
and challenges in MARL. We begin by introducing the concept of a multi-agent
system, which is defined by an environment, the agents in the environment,
and their goals. We then discuss how MARL operates in such systems to learn
optimal policies for the agents, which we illustrate with a number of examples
of potential applications. Next we discuss some of the key challenges in MARL,

“marl-book-main” — 2025/6/18 — 20:07 — page 2 — #31

2 Chapter 1

Environment

Agent

Goals
Actions
Domain knowledge

Communication

O
bservations

Ac
tio

ns

Goals
Actions
Domain knowledge

O
bservations

Ac
tio

ns

Agent

Figure 1.1: Schematic of a multi-agent system. A multi-agent system consists
of an environment and multiple decision-making agents (shown as circles inside
the environment). The agents can observe information about the environment
and take actions to achieve their goals.

such as the non-stationarity and equilibrium selection problems, as well as
several “agendas” of MARL that describe different ways in which MARL can
be used. At the end of this chapter, we give an overview of the topics covered
in the two parts of this book.

1.1 Multi-Agent Systems

A multi-agent system consists of an environment and multiple decision-making
agents that interact in the environment to achieve certain goals. Figure 1.1
shows a general schematic of a multi-agent system, and we describe the basic
components in the following.

Environment An environment is a physical or virtual world whose state
evolves over time and is influenced by the actions of the agents that exist
within the environment. The environment specifies the actions that agents
can take at any point in time as well as the observations that individual
agents receive about the state of the environment. The states of the environ-
ment may be defined as discrete or continuous quantities, or a combination
of both. For example, in a 2D-maze environment, the state may be defined
as the combination of the discrete integer positions of all agents together

“marl-book-main” — 2025/6/18 — 20:07 — page 3 — #32

Introduction 3

with their continuous orientations in radians. Similarly, actions may be
discrete or continuous, such as moving up/down/left/right in the maze or
turning around by a specified continuous angle. Multi-agent environments
are often characterized by the fact that agents only have a limited and imper-
fect view of the environment. This means that individual agents may only
observe some partial information about the state of the environment, and
different agents may receive different observations about the environment.

Agents An agent is an entity that receives information about the state of the
environment and can choose different actions in order to influence the state.
Agents may have different prior knowledge about the environment, such as
the possible states that the environment can be in and how states are affected
by the actions of the agents. Importantly, agents are goal-directed in the
sense that agents have specified goals and choose their actions in order to
achieve their goals. These goals could be to reach a certain environment
state, or to maximize certain quantities such as monetary revenues. In
MARL, such goals are defined by reward functions that specify scalar
reward signals that agents receive after taking certain actions in certain
states. The term policy refers to a function used by the agent to select
actions (or assign probabilities to selecting each action) given the current
state of the environment. If the environment is only partially observed
by the agent, then the policy may be conditioned on the current and past
observations of the agent.

As a concrete example of the above concepts, consider the level-based forag-
ing example shown in Figure 1.2.1 In this example, multiple robots are tasked
with collecting items that are spatially distributed in a grid-world environment.
Each robot and item has an associated skill level, and a group of one or more
robots can collect an item if the robots are located next to the item and the sum
of the robots’ levels is greater than or equal to the item’s level. The state of this
environment at a given time is completely described by variables containing
the x/y-positions of the robots and items, and binary variables for each item
indicating whether the item still exists or not.2 In this example, we use three
independent agents to control each of the three robots. At any given time, each
agent can observe the complete state of the environment and choose an action

1. The level-based foraging example will appear throughout this book. We provide an open-source
implementation of this environment at https://github.com/uoe-agents/lb-foraging. See Section 11.3.1
for more details on this environment.
2. Note that the skill levels of robots and items are not included in the state since these are assumed
constant. However, if the skill levels can change between different episodes, then the state may
additionally include the skill levels of the robots and items.

https://github.com/uoe-agents/lb-foraging

“marl-book-main” — 2025/6/18 — 20:07 — page 4 — #33

4 Chapter 1

Figure 1.2: A level-based foraging task in which a group of three robots, each
controlled by an agent, must collect all items (shown as apples). Each robot
and item has an associated skill level, shown inset. A group of one or more
robots can collect an item if they are located next to the item, and the sum of
the robots’ levels is greater than or equal to the item’s level.

from the set {up, down, left, right, collect, noop} to control its robot. The first
four actions in this action set modify the x/y-position of the robot in the state
by moving the robot into the respective direction (unless the robot is already at
the edge of the grid-world, in which case the action has no effect). The collect
action attempts to collect an item that is located adjacent to the robot; if the item
is collected, the action modifies the binary existence variable corresponding to
the item. The noop (no operation) action has no effect on the state.

Notice that in the previous description, we used the terms “robot” and “agent”
to refer to two distinct concepts. In level-based foraging, the word “robot” is a
label for an object that is explicitly represented via the x/y-position variables.
Similarly, the word “item” refers to an object in level-based foraging that is
represented by its x/y-position variables and its binary existence variable. In
contrast to these object labels, the term “agent” refers to an abstract decision-
making entity that observes some information from the environment and chooses
values for certain action variables, in this case, the action for a robot. If there is
a direct one-to-one correspondence between agents and certain objects, such as
agents and robots in level-based foraging, then it can be convenient to use the
terms interchangeably. For example, in level-based foraging, we may say “the
skill level of agent i” when referring to the skill level of the robot controlled by
agent i. Unless the distinction is relevant, in this book, we will often use the
term “agent” synonymously with the object that it controls.

The defining characteristic of a multi-agent system is that the agents must
coordinate their actions with (or against) each other to achieve their goals. In a

“marl-book-main” — 2025/6/18 — 20:07 — page 5 — #34

Introduction 5

fully cooperative scenario, the agents’ goals are perfectly aligned so that the
agents need to collaborate toward achieving a shared goal. For example, in
level-based foraging, all agents may receive a reward of +1 whenever an item
is successfully collected by any of the agents. In a competitive scenario, the
agents’ goals may be diametrically opposed so that the agents are in direct
competition with each other. An example of such a competitive scenario is two
agents playing a game of chess, in which the winning player gets a reward of +1
and the losing player gets a reward of−1 (or both get 0 for a drawn outcome). In
between these two extremes, the agents’ goals may align in some respects while
differing in other respects, which can lead to complex multi-agent interaction
problems that involve both cooperation and competition to varying degrees. For
example, in the actual implementation of level-based foraging we use in this
book (described in Section 11.3.1), only those agents that were involved in the
collection of an item (rather than all agents) will receive a positive normalized
reward. Thus, the agents have a motivation to maximize their own returns (sum
of rewards), which can lead them to try and collect items before other agents
can do so; but they may also need to collaborate with other agents at certain
times in order to collect an item.

The previously described concepts of states, actions, observations, and re-
wards are formally defined within game models. Different types of game
models exist, and Chapter 3 introduces the most common game models used
in MARL, including normal-form games, stochastic games, and partially ob-
servable stochastic games. A solution for a game model consists of a set of
policies for the agents that satisfies certain desired properties. As we will see in
Chapter 4, there exist a range of solution concepts in the general case. Most
solution concepts are anchored in some notion of equilibrium, which means
that no individual agent can deviate from its policy in the solution to improve
its outcome.

Research in multi-agent systems has a long history in artificial intelligence
and spans a vast range of technical problems (Shoham and Leyton-Brown 2008;
Wooldridge 2009). These include questions such as how to design algorithms
that enable agents to choose optimal actions toward their specified goals; how to
design environments to incentivize certain long-term behaviors in agents; how
information is communicated and propagated among agents; and how norms,
conventions, and roles may emerge in a collective of agents. This book is
concerned with the first of these questions, with a focus on using RL techniques
to optimize and coordinate the policies of agents in order to maximize the
rewards they accumulate over time.

“marl-book-main” — 2025/6/18 — 20:07 — page 6 — #35

6 Chapter 1

Agent 1

Agent 2

Agent n

Environment
joint action modifies environment state

 action

 action

 action

joint action

observation
& reward

observation
& reward

observation
& reward

Figure 1.3: Schematic of multi-agent reinforcement learning. A set of n agents
receive individual observations about the state of the environment, and choose
actions to modify the state of the environment. Each agent then receives a scalar
reward and a new observation, and the loop repeats.

1.2 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) algorithms learn optimal policies
for a set of agents in a multi-agent system.3 As in the single-agent counterpart,
the policies are learned via a process of trial-and-error to maximize the agents’
cumulative rewards, or returns. Figure 1.3 shows a basic schematic of the
MARL training loop. A set of n agents choose individual actions, which
together are referred to as the joint action. The joint action changes the state of
the environment according to the environment dynamics, and the agents receive
individual rewards as a result of this change as well as individual observations
about the new environment state. This loop continues until a terminal criterion
is satisfied (such as one agent winning a game of chess) or indefinitely. A
complete run of this loop from the initial state to the terminal state is called an
episode. The generated data produced from multiple independent episodes —
that is, the experienced observations, actions, and rewards in each episode —
are used to continually improve the agents’ policies.

In the level-based foraging environment introduced in the previous section,
each agent i∈ {1, 2, 3} observes the full environment state and chooses an action
ai ∈ {up, down, left, right, collect, noop}. Given the joint action (a1, a2, a3), the

3. This book uses a literal definition of the MARL term in which we learn policies for multiple
agents. This is in contrast to learning a policy for a single agent that operates in a multi-agent
system in which we have no control over the other agents.

“marl-book-main” — 2025/6/18 — 20:07 — page 7 — #36

Introduction 7

environment state transitions into a new state by modifying the x/y-positions
of the robots and the binary existence variables of the items, depending on the
chosen actions in the joint action. Then each agent receives a reward, such as
+1 if any of the items has been collected and 0 otherwise, and observes the new
state of the environment. An episode in level-based foraging terminates once all
items have been collected, or after a maximum number of allowed time steps.
Initially, each agent starts with a random policy that selects actions randomly.
As the agents keep trying different actions in different states and observe the
resulting rewards and new states, they will change their policies to select actions
in each state that will maximize the sum of received rewards.

The MARL loop shown in Figure 1.3 is analogous to the single-agent RL loop
(which will be covered in Chapter 2) and extends it to multiple agents. There are
several important use cases in which MARL can have significant benefits over
single-agent RL. One use case for MARL is to decompose a large, intractable
decision problem into smaller, more tractable decision problems. To illustrate
this idea, consider again the level-based foraging example shown in Figure 1.2.
If we view this as a single-agent RL problem, then we have to train a single
central agent that selects actions for each of the three robots. Thus, an action
of the central agent is defined by the tuple (a1, a2, a3), in which ai specifies
what robot i does. This results in a decision problem with 63 = 216 possible
actions for the central agent in every time step. Even in this toy example,
most standard single-agent RL algorithms do not scale easily to action spaces
this large. However, we can decompose this decision problem by introducing
three independent agents, one for each robot, such that each agent faces a
decision problem with only six possible actions in each time step. Of course,
this decomposition introduces a new challenge, which is that the agents need to
coordinate their actions in order to be successful. MARL algorithms may use
various approaches to facilitate the learning of coordinated agent policies.

Even if we were able to solve the previous example using single-agent RL
to train a central agent, this approach rests on the implicit assumption that the
environment allows for centralized control. However, in many applications of
multi-agent systems, it may not be possible to control and coordinate the actions
of multiple agents from a central place. Examples include autonomous driving
in urban environments, where each car requires its own local policy to drive, and
a team of mobile robots used in search-and-rescue missions, where it may not
be possible to communicate with a central coordinator and so each agent (robot)
may need to act fully independently. In such applications, the agents may need
to learn decentralized policies, where each agent executes its own policy locally
based on its own observations. For such applications, MARL algorithms can
learn agent policies that can be executed in a decentralized fashion.

“marl-book-main” — 2025/6/18 — 20:07 — page 8 — #37

8 Chapter 1

Dimension Questions

Size How many agents exist in the environment? Is the number
of agents fixed, or can it change? How many states and
actions does the environment specify? Are states/actions
discrete or continuous? Are actions defined as single values
or multi-valued vectors?
(Chapter 3)

Knowledge Do agents know what actions are available to themselves
and to other agents? Do they know their own reward func-
tions, and the reward functions of other agents? Do agents
know the state transition probabilities of the environment?
(Chapter 3)

Observability What can agents observe about their environment? Can
agents observe the full environment state, or are their ob-
servations partial and noisy? Can they observe the actions
and/or the rewards of other agents?
(Chapter 3)

Rewards Are the agents opponents, with zero-sum rewards? Or are
agents teammates, with common (shared) rewards? Or do
agents have to compete and cooperate in some way?
(Chapter 3)

Objective Is the agents’ goal to learn an equilibrium joint policy?
What type of equilibrium? Is performance during learning
important, or only the final learned policies? Is the goal to
perform well against certain classes of other agents?
(Chapters 4 and 5)

Centralization &
Communication

Can agents coordinate their actions via a central controller
or coordinator? Or do agents learn fully independent poli-
cies? Can agents share/communicate information during
learning and/or after learning? Is the communication chan-
nel reliable, or noisy and unreliable?
(Chapters 3, 5, 6, and 9)

Figure 1.4: Dimensions in MARL and relevant book chapters for further details.

“marl-book-main” — 2025/6/18 — 20:07 — page 9 — #38

Introduction 9

MARL algorithms can be categorized based on a number of dimensions, as
shown in Figure 1.4. For example, this includes assumptions about the agents’
rewards (e.g., fully cooperative, competitive, or mixed), what type of solution
concept the algorithm is designed to achieve (e.g., Nash equilibrium), and what
agents can observe about their environment. Algorithms can also be categorized
based on assumptions made during the learning of agent policies (“training”)
versus assumptions made after learning (“execution”). Centralized training
and execution assumes that both stages have access to some centrally shared
mechanism or information, such as sharing all observations between agents. For
example, a single central agent may receive information from all other agents
and dictate the actions to the agents. Such centralization can help to improve
coordination between agents and alleviate issues such as non-stationarity (dis-
cussed in Section 1.4). In contrast, decentralized training and execution assumes
no such centrally shared information, and instead requires that the learning of
an agent’s policy as well as the policy itself only use the local information of
that agent. The third major category, centralized training with decentralized
execution, aims to combine the benefits of the two aforementioned approaches,
by assuming that centralization is feasible during training (e.g., in simulation)
while producing policies that can be executed in a fully decentralized way.
These ideas will be further discussed in Chapter 9.

1.3 Application Examples

We provide several examples to illustrate the MARL training loop shown in
Figure 1.3 and its different constituent elements, such as agents, observations,
actions, and rewards. Each example is based on a potential real-world appli-
cation, and we give pointers to works that have used MARL to develop such
applications.

1.3.1 Multi-Robot Warehouse Management

Imagine a large warehouse consisting of many aisles of storage racks that
contain all manner of items. There is a constant stream of orders, which specify
certain items and quantities to be picked up from the storage racks and delivered
to a work station for further processing. Suppose we have one hundred mobile
robots that can move along the aisles and pick items from the storage racks.
We can use MARL to train these robots to collaborate optimally to service
the incoming orders, with the goal of completing the orders as quickly and
efficiently as possible. In this application, each robot could be controlled by an
independent agent, so we would have 100 agents. Each agent might observe

“marl-book-main” — 2025/6/18 — 20:07 — page 10 — #39

10 Chapter 1

information about its own location and current heading within the warehouse,
the items it is carrying, and the current order it is servicing. It might also
observe information about other agents, such as their locations, items, and
orders. The actions of an agent may include physical movements, such as
rotating toward a certain direction and accelerating/braking as well as picking
items. Actions might also include sending communication messages to other
robots, which could for example contain information about the travel plans
of the communicating agent. Lastly, each agent might receive an individual
positive reward when completing an order, which includes picking all items at
the specified quantities in the order. Alternatively, the agents may all receive a
collective reward when any order has been completed by any robot. The latter
case, when all agents receive identical rewards, is called common reward (or
shared reward) and is an important special case in MARL, discussed further
in Chapter 3. Krnjaic et al. (2024) used MARL algorithms for multi-robot
warehouse applications. A simple simulator of a multi-robot warehouse is
described in Section 11.3.4.

1.3.2 Competitive Play in Board Games and Video Games

MARL can be used to train agents to achieve strong competitive play in board
and card games (e.g., Backgammon, Chess, Go, Poker) and multi-player video
games (e.g., shooting games, racing games, and other games). Each agent
assumes the role of one of the players in the game. Agents may have actions
available to move individual pieces or units to specific positions, placing specific
cards, shooting target units, and other actions. Agents may observe the full game
state, such as the entire game board with all pieces, or they may receive only a
partial observation, such as their own cards but not the cards of other players or
a partial view of the game map. Depending on the rules and mechanics of the
game, the agents may or may not observe the chosen actions of other agents.
In fully competitive games with two agents, one agent’s reward is the negative
of the other agent’s reward. Thus, an agent may receive a reward of +1 for
winning the game, in which case the other losing agent will receive a reward of
-1, and vice versa. This property is referred to as zero-sum reward and is another
important special case in MARL. With this setup, during MARL training, the
agents will learn to exploit each other’s weaknesses and improve their play
to eliminate their own weaknesses, leading to strong competitive play. Many
different types of board games, card games, and video games have been tackled
using MARL approaches (Tesauro 1994; Silver et al. 2018; Vinyals et al. 2019;
Bard et al. 2020; Meta Fundamental AI Research Diplomacy Team et al. 2022;
Pérolat et al. 2022).

“marl-book-main” — 2025/6/18 — 20:07 — page 11 — #40

Introduction 11

1.3.3 Autonomous Driving

Autonomous driving in urban environments and highways involves frequent
interactions with other vehicles. Using MARL, we could train control policies
for multiple vehicles to navigate through complicated interaction scenarios,
such as driving through busy junctions and roundabouts and merging onto
highways. The actions of an agent might be the continuous controls for a
vehicle, such as steering and acceleration/braking, or discrete actions such as
deciding between different maneuvers to execute (e.g., change lane, turning,
overtaking). An agent may receive observations about its own controlled vehicle
(e.g., position on lane, orientation, and speed) as well as observations about
other nearby vehicles. Observations about other vehicles may be uncertain
due to sensor noise, and they may be incomplete due to partial observability
caused by occlusions (e.g., other vehicles blocking the agent’s view). The
reward of each agent can involve multiple factors. At a basic level, agents must
avoid collisions and so any collision would result in a large negative reward. In
addition, we want the agents to produce efficient and natural driving behavior,
so there may be positive rewards for minimizing driving times, and negative
rewards for abrupt acceleration/braking and frequent lane changes. Therefore,
in contrast to the multi-robot warehouse (agents have the same goal) and game
playing (agents have opposed goals), here we have a mixed-motive scenario in
which agents collaborate to avoid collisions but are also self-interested based on
their desire to minimize driving times and drive smoothly. This case is referred
to as general-sum reward and is among the most challenging tasks in MARL.
MARL algorithms have been applied to a range of autonomous driving tasks
(e.g., Shalev-Shwartz, Shammah, and Shashua 2016; Peake et al. 2020; Zhou,
Luo, et al. 2020; Dinneweth et al. 2022; Zhou et al. 2022).

1.3.4 Automated Trading in Electronic Markets

Software agents can be developed to assume the roles of traders in electronic
markets (Wellman, Greenwald, and Stone 2007). The typical objective of agents
in a market is to maximize their own returns by placing buying and selling
orders. Thus, agents have actions to buy or sell commodities at specified times,
prices, and quantities. Agents receive observations about price developments in
the market and other key performance indicators, and possibly some information
about the current state of the order book. In addition, the agents may need to
model and monitor external events and processes based on diverse types of
observed information, such as news pertaining to certain companies, or energy
demand and usage of own managed households in peer-to-peer energy markets.
The reward of an agent could be defined as a function of gains and losses

“marl-book-main” — 2025/6/18 — 20:07 — page 12 — #41

12 Chapter 1

made over a certain period of time, for example at the end of each trading day,
quarter, or year. Thus, trading in electronic markets is another example of a
mixed-motive scenario, since the agents need to collaborate in some sense to
agree on sell-buy prices while aiming to maximize their own individual gains.
MARL algorithms have been proposed for different types of electronic markets,
including financial markets and energy markets (Roesch et al. 2020; Qiu et
al. 2021; Shavandi and Khedmati 2022).

1.4 Challenges of MARL

Various challenges exist in multi-agent reinforcement learning that stem from
aspects such as that agents may have conflicting goals, that agents may have
different partial views of their environment, and that agents are learning concur-
rently to optimize their policies. Next we outline some of the main challenges,
which will be discussed in more detail in Chapter 5.

Non-stationarity caused by learning agents An important characteristic of
MARL is non-stationarity caused by the continually changing policies of
the agents during their learning processes. This non-stationarity can lead to
a moving target problem because each agent adapts to the policies of other
agents whose policies in turn also adapt to changes in other agents, thereby
potentially causing cyclic and unstable learning dynamics. This problem is
further exacerbated by the fact that the agents may learn different behaviors
at different rates as a result of their different rewards and local observations.
Thus, the ability to handle such non-stationarity in a robust way is often
a crucial aspect in MARL algorithms and has been the subject of much
research.

Optimality of policies and equilibrium selection When are the policies of
agents in a multi-agent system optimal? In single-agent RL, a policy is
optimal if it achieves maximum expected returns in each state. However, in
MARL, the returns of one agent’s policy also depend on the other agents’
policies, and thus we require more sophisticated notions of optimality.
Chapter 4 presents a range of solution concepts, such as equilibrium-type
solutions in which each agent’s policy is in some specific sense optimal
with respect to the other agents’ policies. In addition, while in the single-
agent case all optimal policies yield the same expected return for the agent,
in a multi-agent system (where agents may receive different rewards) there
may be multiple equilibrium solutions, and each equilibrium may entail
different returns for different agents. Thus, there is an additional challenge
of agents having to essentially negotiate during learning which equilibrium

“marl-book-main” — 2025/6/18 — 20:07 — page 13 — #42

Introduction 13

to converge to (Harsanyi and Selten 1988). A central goal of MARL
research is to develop learning algorithms that can learn agent policies that
robustly converge to a particular solution type.

Multi-agent credit assignment Temporal credit assignment in RL is the prob-
lem of determining which past actions contributed to a received reward. In
MARL, this problem is compounded by the additional problem of deter-
mining whose action contributed to the reward. To illustrate, consider the
level-based foraging example shown in Figure 1.2 and assume all agents
choose the “collect” action, following which they receive a collective re-
ward of +1. Given only this state/action/reward information, it can be
highly non-trivial to disentangle the contribution of each agent to the re-
ceived reward, in particular that the agent on the left did not contribute to
the reward since its action had no effect (the agent’s level was not large
enough). While ideas based on counterfactual reasoning can address this
problem in principle, it is still an open problem how to resolve multi-agent
credit assignment in an efficient and scalable way.

Scaling in number of agents In a multi-agent system, the total number of
possible action combinations between agents may grow exponentially with
the number of agents. This is particularly the case if each added agent
comes with its own additional action variables. For example, in level-based
foraging, each agent controls a robot and adding another agent comes with
its own associated action variable to control a robot. (But see Section 5.4.4
for a counter-example without exponential growth.) In the early days of
MARL research, it was common to use only two agents to avoid issues
with scaling. Even with today’s deep learning-based MARL algorithms, it
is common to use a number of agents between 2 and 10. How to handle
many more agents in an efficient and robust way is an important goal in
MARL research.

1.5 Agendas of MARL

An influential article by Shoham, Powers, and Grenager (2007) titled “If multi-
agent learning is the answer, what is the question?” describes several distinct
agendas that have been pursued in MARL research.4 The agendas differ in their

4. The article of Shoham, Powers, and Grenager (2007) was part of a special issue called “Founda-
tions of Multi-Agent Learning” which was published in the Artificial Intelligence journal (Vohra
and Wellman 2007). This special issue contains many interesting articles from some of the early
contributors in MARL research, including responses to Shoham et al.’s article.

“marl-book-main” — 2025/6/18 — 20:07 — page 14 — #43

14 Chapter 1

motivations and goals for using MARL, as well as the criteria by which progress
and success are measured. In their article, Shoham et al. made the important
point that one must be clear about the purpose and goals when using MARL.
We describe the main agendas as follows:

Computational The computational agenda uses MARL as an approach to
compute solutions for game models. A solution consists of a collection of
decision policies for the agents that satisfy certain properties (e.g., Nash
equilibrium and other solution concepts, discussed in Chapter 4). Once
computed, a solution could be deployed in an application of the game to
control the agents (see Section 1.3 for some examples), or it may be used
to conduct further analysis of the game. Thus, in the computational agenda,
MARL algorithms compete with other direct methods to compute game
solutions (Nisan et al. 2007; Roughgarden 2016). Such direct methods can
be significantly more efficient than MARL algorithms for certain types of
games (such as the linear programming methods discussed in Sections 4.3.1
and 4.6.1), but they typically require full knowledge of the game, including
the reward functions of all agents. In contrast, MARL algorithms are
usually designed to learn solutions without full knowledge of the game.

Prescriptive The prescriptive agenda focuses specifically on the behaviors and
performance of agents during learning and asks how they should learn to
achieve a given set of criteria. Different criteria have been proposed in
this regard. One possible criterion is that the average reward received by
a learning agent should not fall below a certain threshold during learning,
regardless of how other agents may be learning. An additional criterion
might be that the learning agent should learn optimal actions if the other
agents come from a certain class of agents (such as static, non-learning
agents) and otherwise should not fall below a certain performance thresh-
old (Powers and Shoham 2004). Such criteria focus on the behaviors of
agents during learning, and may leave open whether the collective learning
process converges to a particular equilibrium. Thus, convergence to a
particular solution concept (e.g., equilibrium) is not necessarily the goal in
this agenda.

Descriptive The descriptive agenda uses MARL to study the behaviors of
agents, including natural agents such as humans and animals, when learning
in a population. This agenda often begins by proposing a certain MARL
algorithm that uses an idealized description of how the studied agents adapt
their actions based on past interactions. Methods from social sciences and
behavioral economics can be used to test how closely the MARL algorithm
matches the behavior of the agents, such as via controlled experimentation

“marl-book-main” — 2025/6/18 — 20:07 — page 15 — #44

Introduction 15

in a laboratory setting (Mullainathan and Thaler 2000; Camerer 2011;
Drouvelis 2021). This is followed by an analysis, such as via methods
based on evolutionary game theory (Bloembergen et al. 2015), of whether
a population of such agents will converge to a certain kind of equilibrium
solution if all agents use the proposed MARL algorithm.

Our perspective in this book is to view MARL as a method to optimize the
decision policies of agents toward defined criteria. As such, the book primarily
covers ideas and algorithms from the computational and prescriptive agendas.
In particular, the computational agenda is closest to our perspective, which
is reflected in the structure of the book by first introducing game models and
solution concepts, followed by algorithms designed to learn such solutions.
Using MARL to study the learning behaviors of natural and other agents, as in
the descriptive agenda, is outside the scope of this book.

1.6 Book Contents and Structure

This book provides an introduction to the theory and practice of multi-agent
reinforcement learning, suitable for university students, researchers, and prac-
titioners. Following this introductory chapter, the remainder of the book is
divided into two parts.

Part I of the book provides foundational knowledge about the basic models
and concepts used in MARL. Specifically, Chapter 2 gives an introduction to
the theory and tabular algorithms of single-agent RL. Chapter 3 introduces the
basic game models to define concepts such as states, actions, observations, and
rewards in a multi-agent environment. Chapter 4 then introduces a series of
solution concepts that define what it means to solve these game models, that is,
what it means for agents to act optimally. The final two chapters in this part of the
book explore a range of MARL approaches for computing solutions in games:
Chapter 5 presents basic concepts such as central and independent learning,
and discusses core challenges in MARL. Chapter 6 introduces different classes
of foundational algorithms developed in MARL research and discusses their
learning properties.

Part II of the book focuses on contemporary research in MARL that leverages
deep learning techniques to create new powerful MARL algorithms. We start
by providing introductions to deep learning and deep reinforcement learning in
Chapters 7 and 8, respectively. Building on the previous two chapters, Chap-
ter 9 introduces several of the most important MARL algorithms developed
in recent years, including ideas such as centralized training with decentralized

“marl-book-main” — 2025/6/18 — 20:07 — page 16 — #45

16 Chapter 1

execution, value decomposition, parameter sharing, and population-based train-
ing. Chapter 10 provides practical guidance when implementing and using
MARL algorithms and how to evaluate the learned policies. Finally, Chapter 11
describes examples of multi-agent environments that have been developed in
MARL research.

One of the goals of this book is to provide a starting point for readers who
want to use the MARL algorithms discussed in this book in practice, as well
as develop their own algorithms. Thus, the book comes with its own MARL
codebase (downloadable from the book’s website) that was developed in the
Python programming language, providing implementations of many existing
MARL algorithms that are self-contained and easy to read. Chapter 10 uses
code snippets from the codebase to explain implementation details of the impor-
tant concepts underlying the algorithms presented in the earlier chapters. We
hope that the provided code will be useful to readers in understanding MARL
algorithms as well as getting started with using them in practice.

“marl-book-main” — 2025/6/18 — 20:07 — page 17 — #46

I FOUNDATIONS OF MULTI-AGENT REINFORCEMENT
LEARNING

Part I of this book covers the foundations of multi-agent reinforcement learning.
The chapters in this part focus on basic questions, including how to represent the
mechanics of a multi-agent system via game models; how to define a learning
objective in games to specify optimal agent behaviors; and how reinforcement
learning methods can be used to learn optimal agent behaviors, as well as the
complexities and challenges involved in multi-agent learning.

Chapter 2 provides an introduction to the basic models and algorithmic con-
cepts of reinforcement learning, including Markov decision processes, dynamic
programming, and temporal-difference learning. Chapter 3 then introduces
game models to represent interaction processes in a multi-agent system, in-
cluding basic normal-form games, stochastic games, and partially observable
stochastic games. Chapter 4 introduces a range of solution concepts from game
theory to define optimal agent policies in games, including equilibrium-type
solutions such as minimax, Nash, and correlated equilibrium, as well as other
concepts such as Pareto optimality, welfare/fairness, and no-regret. We pro-
vide examples for each solution concept and also discuss important conceptual
limitations. Together, a game model and a solution concept define a learning
problem in multi-agent reinforcement learning.

Building on the previous chapters, Chapters 5 and 6 look at how to use
reinforcement learning techniques to learn optimal agent policies in a game.
Chapter 5 begins by defining the general learning process in games and different
convergence types, and introduces the basic concepts of central learning and
independent learning that reduce the multi-agent learning problem to a single-
agent learning problem. The chapter then discusses the central challenges in
multi-agent reinforcement learning, including non-stationarity, equilibrium se-
lection, multi-agent credit assignment, and scaling to many agents. Chapter 6
introduces several classes of foundational algorithms for multi-agent reinforce-
ment learning that go beyond the basic approaches introduced in the prior
chapter, and discusses their convergence properties.

“marl-book-main” — 2025/6/18 — 20:07 — page 18 — #47

“marl-book-main” — 2025/6/18 — 20:07 — page 19 — #48

2 Reinforcement Learning

Multi-agent reinforcement learning (MARL) is, in essence, reinforcement learn-
ing (RL) applied to multi-agent game models to learn optimal policies for the
agents. Thus, MARL is deeply rooted in both RL theory and game theory. This
chapter provides a basic introduction to the theory and algorithms of RL when
there is only a single agent for which we want to learn an optimal policy. We
will begin by providing a general definition of RL, following which we will
introduce the Markov decision process (MDP) as the foundational model used
in RL to represent single-agent decision processes. Based on the MDP model,
we will define basic concepts such as expected returns, optimal policies, value
functions, and Bellman equations. The goal in an RL problem is to learn an op-
timal policy that chooses actions to achieve some objective, such as maximizing
the expected (discounted) return in each state of the environment (Figure 2.1).

We will then introduce two basic families of algorithms to compute optimal
policies for MDPs: dynamic programming and temporal-difference learning.
Dynamic programming requires complete knowledge of the MDP specification
and uses this knowledge to compute optimal value functions and policies. In
contrast, temporal-difference learning does not require complete knowledge
of the MDP; instead, it learns optimal value functions and policies by inter-
acting with the environment and generating experiences. Most of the MARL
algorithms introduced in Chapter 6 build on these families of algorithms and
essentially extend them to game models.

Part I of this book focuses on the basic models and concepts used in MARL,
and as such this chapter focuses only on the basic RL concepts that are required
to understand the following chapters of this part of the book. In particular,
topics such as value and policy function approximation are not covered in this
chapter. These latter topics will be covered in Chapters 7 and 8 in Part II of the
book.

“marl-book-main” — 2025/6/18 — 20:07 — page 20 — #49

20 Chapter 2

RL Problem
Decision Process Model

e.g., MDP, POMDP,
multi-armed bandit

Learning Objective
e.g., discounted return with

specific discount factor
= +

Figure 2.1: An RL problem is defined by the combination of a decision process
model that defines the mechanics of the agent-environment interaction and
a learning objective that specifies the properties of the optimal policy to be
learned (e.g., maximize expected discounted return in each state).

2.1 General Definition

We begin by providing a general definition of reinforcement learning:

Reinforcement learning (RL) algorithms learn solutions for sequential
decision processes via repeated interaction with an environment.

This definition raises three main questions:

• What is a sequential decision process?
• What is a solution to the process?
• What is learning via repeated interaction?

A sequential decision process is defined by an agent that makes decisions
over multiple time steps within an environment to achieve a specified goal. In
each time step, the agent receives an observation from the environment and
chooses an action. In a fully observable setting, as we assume in this chapter,
the agent observes the full state of the environment; but in general, observations
may be incomplete and noisy. Given the chosen action, the environment may
change its state according to some transition dynamics and send a scalar reward
signal to the agent. Figure 2.2 summarizes this process.

A solution to the decision process is an optimal decision policy for the agent,
which chooses actions in each state to achieve some specified learning objective.
Typically, the learning objective is to maximize the expected return for the agent
in each possible state.1 The return in a state when following a given policy is
defined as the sum of rewards received over time from that state onward. Thus,
RL assumes that the goal in the decision process can, in principle, be framed as
the maximization of expected returns.

1. Other learning objectives can be specified, such as maximizing the average reward (Sutton and
Barto 2018) and different types of “risk-sensitive” objectives (Mihatsch and Neuneier 2002).

“marl-book-main” — 2025/6/18 — 20:07 — page 21 — #50

Reinforcement Learning 21

Agent

Environment
action modifies environment state

 action
 observation

& reward

Figure 2.2: Basic reinforcement learning loop for a single-agent system.

Finally, RL algorithms learn such optimal policies by trying different ac-
tions in different states and observing the outcomes. This way of learning is
sometimes described as “trial and error” since the actions may lead to positive
or negative outcomes that are not known beforehand and, therefore, must be
discovered by trying the actions. A central problem in this learning process,
often called the exploration-exploitation dilemma, is how to balance exploring
the outcomes of different actions versus sticking with actions that are currently
believed to be best. Exploration may discover better actions but can accrue low
rewards in the process, while exploitation achieves a certain level of returns but
may not discover the optimal actions.

RL is a type of machine learning that differs from other types such as su-
pervised learning and unsupervised learning. In supervised learning, we have
access to a set of labeled input-output pairs {xi, yi} of some unknown function
f (xi) = yi, and the goal is to learn this function using the data. In unsupervised
learning, we have access to some unlabeled data {xi} and the goal is to identify
some useful structure within the data. RL is neither of these: RL is not super-
vised learning because the reward signals do not tell the agent which action
to take in each state xi, and thus do not act as a supervision signal yi. This is
because some actions may give lower immediate reward but may lead to states
from which the agent can eventually receive higher rewards. RL also differs
from unsupervised learning because the rewards, while not a supervised signal,
act as a proxy from which to learn an optimal policy.

In the following sections, we will formally define these concepts — sequential
decision processes, optimal policies, and learning by interaction — within a
framework called the Markov decision process.

“marl-book-main” — 2025/6/18 — 20:07 — page 22 — #51

22 Chapter 2

2.2 Markov Decision Processes

The standard model used in RL to define the sequential decision process is the
Markov decision process:

Definition 1 (Markov decision process) A finite Markov decision process
(MDP) consists of:

• Finite set of states S, with subset of terminal states S̄⊂ S
• Finite set of actions A
• Reward functionR : S×A× S→R
• State transition probability function T : S×A× S→ [0, 1] such that

∀s∈ S, a∈A :
∑
s′∈S

T (s, a, s′) = 1 (2.1)

• Initial state distribution µ : S→ [0, 1] such that∑
s∈S

µ(s) = 1 and ∀s∈ S̄ :µ(s) = 0 (2.2)

An MDP starts in an initial state s0 ∈ S, which is sampled from µ. At time t,
the agent observes the current state st ∈ S of the MDP and chooses an action
at ∈A with probability given by its policy, π(at | st), which is conditioned on
the state. Given the state st and action at, the MDP transitions into a next state
st+1 ∈ S with probability given by T (st, at, st+1), and the agent receives a reward
rt =R(st, at, st+1). We also write this probability as T (st+1 | st, at) to emphasize
that it is conditioned on the state-action pair st, at. These steps are repeated
until the process reaches a terminal state st ∈ S̄ or after completing a maximum
number of T time steps,2 after which the process terminates; or the steps may
be repeated for an infinite number of time steps if the MDP is non-terminating.
Each independent run of this process is referred to as an episode.

A finite MDP can be compactly represented as a finite state machine.
Figure 2.3 shows an example MDP, in which a Mars rover has collected some
samples and must return to the base station. From the Start state, there are two
paths that lead to the Base target state. The rover can travel down a steep moun-
tain slope (action right) that will take it directly to the base station. However,
there is a high probability of 0.5 that the rover will fall down the cliff and be
destroyed (−10 reward). Or the rover can travel through a longer path (action
left, then two times action right), which passes by two sites (Site A and Site B)

2. Technically, if we assume that the agent can observe the time step t, then termination after T time
steps can be modeled by including t in the information contained in the state st and defining the set
of terminal states S̄ to contain all states st with t ≥ T .

“marl-book-main” — 2025/6/18 — 20:07 — page 23 — #52

Reinforcement Learning 23

Start Base

 right
 p = 0.8

r = -1
Site A

r = +10

right

Site B

Immobile

Destroyed

 right p = 0.5
 r = +10

p = 0.2
r = -3

 p = 0.1
r = -3

p = 0.5
r = -10

left

 p = 0.9
r = -1

 left r=-1 left

 r = -1

Figure 2.3: Mars Rover MDP. States are shown as circles, where Start is the
initial state. Each non-terminal state (white) has two possible actions, right and
left, that are shown as directed edges with associated transition probabilities (p)
and rewards (r). Gray shaded circles mark terminal states.

before arriving at the base station. However, it takes a day to arrive at each site
(−1 reward), and there is a probability of 0.3 that the rover will get stuck on
the rocky ground and be immobilized (−3 reward). Arriving at the base station
gives a reward of +10.

The term “Markov” comes from the Markov property, which states that the
future state and reward are conditionally independent of past states and actions,
given the current state and action:

Pr(st+1, rt | st, at, st−1, at−1, ..., s0, a0) = Pr(st+1, rt | st, at) (2.3)

This means that the current state provides sufficient information to choose
optimal actions in an MDP — past states and actions are not relevant.

The most common assumption in RL is that the dynamics of the MDP, in
particular the transition and reward functions T andR, are a priori unknown to
the agent. Typically, the only parts of the MDP that are assumed to be known
are the action space A and the state space S.

“marl-book-main” — 2025/6/18 — 20:07 — page 24 — #53

24 Chapter 2

While Definition 1 defines MDPs with finite, or discrete, states and actions,
MDPs can also be defined with continuous states and actions, or a mixture of
both discrete and continuous elements. Moreover, while the reward functionR
as defined here is deterministic, MDPs can also define a probabilistic reward
function such thatR(s, a, s′) gives a distribution over possible rewards.

The multi-armed bandit problem (or simply “bandit problem”) is an important
special case of the MDP in which each episode terminates after one time step
(i.e., T = 1), there is only a single state in S and no terminal states (i.e., |S| = 1
and S̄ = ∅), and the reward functionR is probabilistic and unknown to the agent.
Thus, in such a bandit problem, each action produces a reward from some
unknown reward distribution, and the goal is effectively to find the action that
yields the highest expected reward as quickly as possible. Bandit problems
have been used as a basic model to study the exploration-exploitation dilemma
(Lattimore and Szepesvári 2020).

An inherent assumption in MDPs is that the agent can fully observe the
state of the environment in each time step. In many applications, an agent
only observes partial and noisy information about the environment. Partially
observable Markov decision processes (POMDPs) (Kaelbling, Littman, and
Cassandra 1998) generalize MDPs by defining a decision process in which the
agent receives observations ot rather than directly observing the state st, and
these observations depend in a probabilistic or deterministic way on the state.
Thus, in general, the agent will need to take into account the history of past
observations o0, o1, ..., ot in order to infer the possible current states st of the
environment. POMDPs are a special case of the partially observable stochastic
game (POSG) model introduced in Chapter 3; namely, a POMDP is a POSG
in which there is only one agent. We refer to Section 3.4 for a more detailed
definition and discussion of partial observability in decision processes.

We have defined the MDP as a model of decision processes, but we have not
yet defined the learning objective in an MDP. The next section will introduce
the most common learning objective used in MDPs: maximizing expected
discounted returns. As discussed earlier (Figure 2.1), together, an MDP and
learning objective specify an RL problem.

2.3 Expected Discounted Returns and Optimal Policies

Given a policy π that specifies action probabilities in each state, and assuming
that each episode in the MDP terminates after T time steps, the total return in
an episode is the cumulative reward received over time

r0 + r1 + ... + rT−1. (2.4)

“marl-book-main” — 2025/6/18 — 20:07 — page 25 — #54

Reinforcement Learning 25

Due to the stochastic nature of the MDP, it may not be possible to maximize
this return in all episodes. This is because some actions may lead to different
outcomes with certain probabilities, and these outcomes are outside the control
of the agent. Therefore, the agent can maximize the expected return given by

Eπ

[
r0 + r1 + ... + rT−1] (2.5)

where the expectation Eπ assumes that the initial state is sampled from the
initial state distribution (i.e., s0∼µ), that the agent follows policy π to select
actions (i.e., at∼π(· | st)), and that successor states are governed by the state
transition probabilities (i.e., st+1∼T (· | st, at)).

The above definition of total returns is guaranteed to be finite for a terminating
MDP. However, in non-terminating MDPs the total return may be infinite, in
which case returns may not be informative to distinguish the performance of
different policies that achieve infinite returns. The standard approach to ensuring
finite returns in non-terminating MDPs is to use a discount factor γ ∈ [0, 1],
based on which we define the discounted return3

Eπ

[
r0 + γr1 + γ2r2 + ...

]
= Eπ

[∞∑
t=0

γtrt

]
. (2.6)

For γ < 1 and assuming that rewards are constrained to lie in a finite range
[rmin, rmax], the discounted return is guaranteed to be finite

∞∑
t=0

γtrt ≤ rmax

∞∑
t=0

γt = rmax
1

1− γ (2.7)

where the right-hand fraction in the above equation is the closed form of the
geometric series given by

∑∞
t=0 γ

t.
The discount factor has two equivalent interpretations. One interpretation

is that (1− γ) is the probability with which the MDP terminates after each
time step. Thus, the probability that the MDP terminates after a total of T > 0
time steps is γT−1(1− γ), where γT−1 is the probability of continuing (i.e., not
terminating) in the first T − 1 time steps, multiplied by the probability (1− γ)
of terminating in the following time step. For example, in the Mars Rover MDP
shown in Figure 2.3, we can specify a discount factor of γ = 0.95 to model
the fact that the rover’s battery may fail with a probability of 0.05 after each
state transition. The second interpretation is that the agent gives “weight” γt to
reward rt received at time t. Thus, a γ close to 0 leads to a myopic agent that
cares more about near-term rewards, while a γ close to 1 leads to a farsighted
agent that also values distant rewards. In either case, it is important to note that

3. Note that rt refers to the reward at time t, while γt denotes the exponentiation operation (γ to the
power of t). This is a standard notational convention in RL literature.

“marl-book-main” — 2025/6/18 — 20:07 — page 26 — #55

26 Chapter 2

the discount rate is part of the learning objective and not a tunable algorithm
parameter; γ is a fixed parameter specified by the learning objective. In the
remainder of this book, whenever we refer to returns, we specifically mean
discounted returns with some discount factor γ.

Finally, the above definition of discounted returns can work for both termi-
nating and non-terminating MDPs via the convention of absorbing states. If an
episode reaches a terminal state or a maximum number of time steps, we define
the final state in the episode to be absorbing in that any subsequent actions in
this state will transition the MDP into the same state with probability 1 and give
a reward of 0 to the agent. Thus, once the MDP reaches an absorbing state, it
will forever remain in that state and the agent will not accrue any more rewards.

Based on the above definition of discounted returns and absorbing states, we
can now define the solution to the MDP as the optimal policy π∗ that maximizes
the expected discounted return.

2.4 Value Functions and Bellman Equation

Based on the Markov property defined in Equation 2.3, we know that given
the current state and action, the future states and rewards are independent of
the past states and actions. This implies independence of past rewards, since
rewards are a function of the states and actions, rt =R(st, at, st+1). Therefore,
in an MDP, the expected return can be defined individually for each state s∈ S.
This gives rise to the concept of value functions, which are central to much of
RL theory and many algorithms.

First, note that the discounted reward sequence can be written in recursive
form as

ut = rt + γrt+1 + γ2rt+2 + ... (2.8)

= rt + γut+1. (2.9)

Given a policy π, the state-value function Vπ(s) gives the “value” of state
s under π, which is the expected return when starting in state s and following
policy π to select actions, formally

Vπ(s) =Eπ

[
ut | st = s

]
(2.10)

=Eπ

[
rt + γut+1 | st = s

]
(2.11)

=
∑
a∈A

π(a | s)
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γEπ

[
ut+1 | st+1 = s′

]]
(2.12)

=
∑
a∈A

π(a | s)
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γVπ(s′)

]
(2.13)

“marl-book-main” — 2025/6/18 — 20:07 — page 27 — #56

Reinforcement Learning 27

where Vπ(s) = 0 for terminal (i.e., absorbing) states s∈ S̄. The recursive equation
given in Equation 2.13 is called the Bellman equation in honor of Richard
Bellman and his pioneering work (Bellman 1957).

The Bellman equation for Vπ defines a system of m linear equations with m
variables, where m = |S| is the number of states in the finite MDP:

Vπ(s1) =
∑
a∈A

π(a | s1)
∑
s′∈S

T (s′ | s1, a)
[
R(s1, a, s′) + γVπ(s′)

]
(2.14)

Vπ(s2) =
∑
a∈A

π(a | s2)
∑
s′∈S

T (s′ | s2, a)
[
R(s2, a, s′) + γVπ(s′)

]
(2.15)

...

Vπ(sm) =
∑
a∈A

π(a | sm)
∑
s′∈S

T (s′ | sm, a)
[
R(sm, a, s′) + γVπ(s′)

]
(2.16)

where Vπ(sk) for k = 1, ..., m are the variables in the equation system and π(a | sk),
T (s′ | sk, a),R(sk, a, s′), and γ are constants. This equation system has a unique
solution given by the value function Vπ for policy π. If all elements of the
MDP are known, then one can solve this equation system to obtain Vπ using
any method to solve linear equation systems (such as Gauss elimination).

Analogous to state-value functions, we can define action-value functions
Qπ(s, a) which give the expected return when selecting action a in state s and
then following policy π to select actions subsequently,

Qπ(s, a) =Eπ

[
ut | st = s, at = a

]
(2.17)

=Eπ

[
rt + γut+1 | st = s, at = a

]
(2.18)

=
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γVπ(s′)

]
(2.19)

=
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γ

∑
a′∈A

π(a′ | s′)Qπ(s′, a′)
]

(2.20)

where Qπ(s, a) = 0 for terminal states s∈ S̄. For the jump from Equation 2.19 to
2.20, notice in Equation 2.13 that the second sum (over states s′) is an application
of Equation 2.19, and hence it can be replaced by Qπ(s′, a′). Equation 2.20
admits a system of linear equations that has a unique solution given by Qπ .

A policy π is optimal in the MDP if the policy’s (state or action) value
function is the optimal value function of the MDP, defined as

V∗(s) = max
π′

Vπ′
(s), ∀s∈ S (2.21)

Q∗(s, a) = max
π′

Qπ′
(s, a), ∀s∈ S, a∈A (2.22)

“marl-book-main” — 2025/6/18 — 20:07 — page 28 — #57

28 Chapter 2

We use π∗ to denote any optimal policy with optimal value function V∗ or Q∗.
Because of the Bellman equation, this means that for any optimal policy π∗

we have
∀π′ ∀s : V∗(s)≥Vπ′

(s). (2.23)

Thus, maximizing the expected return in an MDP amounts to maximizing the
expected return in each possible state s∈ S.

In fact, we can write the optimal value functions without reference to the
policy using the Bellman optimality equations:

V∗(s) = max
a∈A

∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γV∗(s′)

]
(2.24)

Q∗(s, a) =
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
(2.25)

The Bellman optimality equations define a system of m non-linear equations,
where m is again the number of states in the finite MDP. The non-linearity
is due to the max-operator used in the equations. The unique solution to the
system is the optimal value function V∗/Q∗.

Once we know the optimal action-value function Q∗, the optimal policy π∗ is
simply derived by choosing actions with maximum value (i.e., expected return)
in each state,

π∗(s) = arg max
a∈A

Q∗(s, a) (2.26)

where we use the =-notation in Equation 2.26 as a convenient shorthand to
denote the deterministic policy that assigns probability 1 to the arg max-action
in state s. If multiple actions have the same maximum value under Q∗, then the
optimal policy can assign arbitrary probabilities to these actions (the probabili-
ties must sum to 1). Therefore, while the optimal value function of the MDP
is always unique, there may be multiple4 optimal policies that have the same
optimal (unique) value function. However, as shown in Equation 2.26, there
always exist deterministic optimal policies in MDPs.

In the next sections, we will present two algorithm families to compute
optimal value functions and policies. The first, dynamic programming, uses the
Bellman (optimality) equations in an iterative way to estimate value functions,
and it requires knowledge of the complete MDP such as the reward function
and state transition probabilities. The second, temporal-difference learning,
does not require complete knowledge of the MDP and instead uses sampled
experiences from interactions with the environment to update value estimates.

4. In fact, if multiple actions have maximum value, then there will be an infinite number of optimal
policies since the set of possible probability assignments to these actions spans a continuous
(infinite) space.

“marl-book-main” — 2025/6/18 — 20:07 — page 29 — #58

Reinforcement Learning 29

2.5 Dynamic Programming

Dynamic programming (DP)5 is a family of algorithms to compute value
functions and optimal policies in MDPs (Bellman 1957; Howard 1960). DP
algorithms use the Bellman equations as operators to iteratively estimate the
value function and optimal policy. Thus, DP algorithms require complete knowl-
edge of the MDP model, including the reward functionR and state transition
probabilities T . While DP algorithms do not “interact” with the environment
as per our definition in Section 2.1, the basic concepts underlying DP are an
important building block in RL theory, including temporal-difference learning
presented in Section 2.6.

The basic DP approach is policy iteration, which alternates between two
tasks:

• Policy evaluation: compute value function Vπ for current policy π
• Policy improvement: improve current policy π with respect to Vπ

Thus, policy iteration produces a sequence of policy and value function esti-
mates, starting with some initial policy π0 (e.g., uniform-random policy) and
value function V0 (e.g., zero vector):

π0→Vπ0→π1→Vπ1→π2→ ...→V∗→π∗ (2.27)

As we will show later in this section, this sequence converges to the optimal
value function, V∗, and optimal policy, π∗, under greedy policy improvements.

We first consider the policy evaluation task. Recall that the Bellman equation
for Vπ defines a system of linear equations, which can be solved to obtain Vπ.
However, using Gauss elimination (the de-facto standard solution approach for
linear equation systems) has time complexity O(m3), where m is the number
of states of the MDP. A number of alternative methods for policy evaluation
have been developed in the DP literature, which often operate in iterative ways
to produce successive approximations of value functions (see Puterman (2014)
and Sutton and Barto (2018) for overviews). Iterative policy evaluation is one
such method that iteratively applies the Bellman equation for Vπ to produce
successive estimates of Vπ . The algorithm first initializes a vector V0(s) = 0 for
all s∈ S. It then repeatedly performs update sweeps for all states s∈ S:

Vk+1(s)←
∑
a∈A

π(a | s)
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γVk(s′)

]
(2.28)

5. The word “programming” in DP refers to a mathematical optimization problem, analogous to
how the term is used in linear programming and non-linear programming. Regarding the adjective
“dynamic,” Bellman (1957) states in his preface that it “indicates that we are interested in processes
in which time plays a significant role, and in which the order of operations may be crucial.”

“marl-book-main” — 2025/6/18 — 20:07 — page 30 — #59

30 Chapter 2

This sequence V0, V1, V2, ... converges to the value function Vπ. Hence, in
practice, we may stop the updates once there are no more changes between Vk

and Vk+1 after performing an update sweep. Notice that Equation 2.28 updates
the value estimate for a state s using value estimates for other states s′. This
property is called bootstrapping and is a core property of many RL algorithms.

As an example, we apply iterative policy evaluation in the Mars Rover
problem from Section 2.2 with γ = 0.95. First, consider a policy π which in the
initial state Start chooses action right with probability 1. (We ignore the other
states since they will never be visited under this policy.) After we run iterative
policy evaluation to convergence, we obtain a value of Vπ(Start) = 0. From
the MDP specification in Figure 2.3, it can be easily verified that this value
is correct, since Vπ(Start) =−10 · 0.5 + 10 · 0.5 = 0. Now, consider a policy π,
which chooses both actions with equal probability 0.5 in the initial state and
action right with probability 1 in states Site A and Site B. In this case, the
converged values are Vπ(Start) = 2.05, Vπ(Site A) = 6.2, and Vπ(Site B) = 10.
For both policies, the values for the terminal states are all 0, since these are
absorbing states as defined in Section 2.3.

To see why iterative policy evaluation converges to the value function Vπ , one
can show that the Bellman operator defined in Equation 2.28 is a contraction
mapping. A mapping f :X →X on a || · ||–normed complete vector space X is
a γ-contraction, for γ ∈ [0, 1), if for all x, y∈X :

||f (x)− f (y)|| ≤ γ ||x− y|| (2.29)

By the Banach fixed-point theorem, if f is a contraction mapping, then for any
initial vector x∈X the sequence f (x), f (f (x)), f (f (f (x))), ... converges to a unique
fixed point x∗ ∈X such that f (x∗) = x∗. Using the max-norm ||x||∞ = maxi | xi|, it
can be shown that the Bellman equation indeed satisfies Equation 2.29. First,
rewrite the Bellman equation as follows:

Vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γVπ(s′)

]
(2.30)

=
∑
a∈A

∑
s′∈S

π(a | s)T (s′ | s, a)R(s, a, s′) +
∑
a∈A

∑
s′∈S

π(a | s)T (s′ | s, a)γVπ(s′)

(2.31)

This can be written as an operator f π(v) over a value vector v∈R|S|

f π(v) = rπ + γMπv (2.32)

where rπ ∈R|S| is a vector with elements

rπs =
∑
a∈A

∑
s′∈S

π(a | s)T (s′ | s, a)R(s, a, s′) (2.33)

“marl-book-main” — 2025/6/18 — 20:07 — page 31 — #60

Reinforcement Learning 31

and Mπ ∈R|S|×|S| is a matrix with elements

Mπ
s,s′ =

∑
a∈A

π(a | s)T (s′ | s, a). (2.34)

Then, we have for any two value vectors v, u:

||f π(v)− f π(u)||∞ = ||(rπ + γMπv)− (rπ + γMπu)||∞ (2.35)

= γ||Mπ(v− u)||∞ (2.36)

≤ γ||v− u||∞. (2.37)

Therefore, the Bellman operator is a γ-contraction under the max-norm, and
repeated application of the Bellman operator converges to a unique fixed point,
which is Vπ. (The inequality in (2.37) holds because for each s∈ S we have∑

s′ Mπ
s,s′ = 1 and, therefore, ||Mπx||∞≤ ||x||∞ for any value vector x.)

Now that we have a method for policy evaluation, we next consider the
policy improvement task in policy iteration. Once we have computed the value
function Vπ, the policy improvement task modifies the policy π by making it
greedy with respect to Vπ for all s∈ S:

π′ = arg max
a∈A
T (s′ | s, a)

[
R(s, a, s′) + γVπ(s′)

]
(2.38)

= arg max
a∈A

Qπ(s, a) (2.39)

By the policy improvement theorem (Sutton and Barto 2018), we know that
if for all s∈ S ∑

a∈A

π′(a | s)Qπ(s, a)≥
∑
a∈A

π(a | s)Qπ(s, a) (2.40)

= Vπ(s) (2.41)

then π′ must be as good as or better than π:

∀s : Vπ′
(s)≥Vπ(s). (2.42)

If after the policy improvement task, the greedy policy π′ did not change
from π, then we know that Vπ′

= Vπ and it follows for all s∈ S:

Vπ′
(s) = max

a∈A
Eπ

[
rt + γVπ(st+1) | st = s, at = a

]
(2.43)

= max
a∈A

Eπ′

[
rt + γVπ′

(st+1) | st = s, at = a
]

(2.44)

= max
a∈A

∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γVπ′

(s′)
]

(2.45)

= V∗(s) (2.46)

“marl-book-main” — 2025/6/18 — 20:07 — page 32 — #61

32 Chapter 2

Algorithm 1 Value iteration for MDPs

1: Initialize: V(s) = 0 for all s∈ S
2: Repeat until V converged:

∀s∈ S : V(s)←max
a∈A

∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γV(s′)

]
(2.48)

3: Return optimal policy π∗ with

∀s∈ S : π∗(s)← arg max
a∈A

∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γV(s′)

]
(2.49)

Therefore, if π′ did not change from π after policy improvement, we know that
π′ must be the optimal policy of the MDP, and policy iteration is complete.

The above version of policy iteration, which uses iterative policy evaluation,
makes multiple complete update sweeps over the entire state space S. Value
iteration is a DP algorithm that combines one sweep of iterative policy evalua-
tion and policy improvement in a single update equation by using the Bellman
optimality equation as an update operator:

Vk+1(s)←max
a∈A

∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γVk(s′)

]
, ∀s∈ S (2.47)

Following a similar argument as for the Bellman operator, it can be shown
that the Bellman optimality operator defined in Equation 2.47 is a γ-contraction
mapping. Thus, repeated application of value iteration converges to the unique
fixed point that is the optimal value function V∗. Algorithm 1 provides the
complete pseudocode for the value iteration algorithm.

Returning to the Mars Rover example, if we run value iteration to conver-
gence, we obtain the optimal state values V∗(Start) = 4.1, V∗(Site A) = 6.2, and
V∗(Site B) = 10. The optimal policy π∗ chooses action left with probability 1 in
the initial state and action right with probability 1 in states Site A and Site B.

2.6 Temporal-Difference Learning

Temporal-difference learning (TD) is a family of RL algorithms that learn
value functions and optimal policies based on experiences from interactions
with the environment. The experiences are generated by following the agent-
environment interaction loop shown in Figure 2.2: in state st, sample an action
at∼π(· | st) from policy π, then observe reward rt =R(st, at, st+1) and the new
state st+1∼T (· | st, at). Like DP algorithms, TD algorithms learn value functions
based on the Bellman equations and bootstrapping — estimating the value of a

“marl-book-main” — 2025/6/18 — 20:07 — page 33 — #62

Reinforcement Learning 33

state or action using value estimates of other states/actions. However, unlike DP
algorithms, TD algorithms do not require complete knowledge of the MDP, such
as the reward function and state transition probabilities. Instead, TD algorithms
perform the policy evaluation and policy improvement tasks based solely on
the experiences collected while interacting with the environment.

TD algorithms use the following general update rule to learn action-value
functions:

Q(st, at)←Q(st, at) +α
[
X −Q(st, at)

]
(2.50)

where X is the update target, and α∈ (0, 1] is the learning rate (or step size).
The update target X is constructed based on experience samples (st, at, rt, st+1)
collected from interactions with the environment. A wide range of options exist
to specify the update target, and here we present two basic variants.

Recall the Bellman equation for the action-value function Qπ for policy π:

Qπ(s, a) =
∑
s′∈S

T (s′ | s, a)

[
R(s, a, s′) + γ

∑
a′∈A

π(a′ | s′)Qπ(s′, a′)

]
(2.51)

Sarsa (Sutton and Barto 2018) is a TD algorithm that constructs an update
target based on Equation 2.51 by replacing the summations over successor
states s′ and actions a′ as well as the reward function R(s, a, s′) with their
corresponding elements from the experience tuple (st, at, rt, st+1, at+1) (hence
the name Sarsa):

X = rt + γQ(st+1, at+1) (2.52)

Here, the action at+1 is sampled from the policy π in the successor state st+1,
at+1∼π(· | st+1). The complete Sarsa update rule is specified as

Q(st, at)←Q(st, at) +α
[
rt + γQ(st+1, at+1)−Q(st, at)

]
. (2.53)

If π stays fixed, then it can be shown under certain conditions that Sarsa
will learn the action-value function Q = Qπ . The first condition is that all state-
action combinations (s, a)∈ S×A must be tried an infinite number of times
during learning. The second condition is given by the “standard stochastic
approximation conditions,” which state that the learning rate α must be reduced
over time in a way that satisfies the following conditions:

∀s∈ S, a∈A :
∞∑
k=1

αk(s, a)→∞ and
∞∑
k=1

αk(s, a)2 <∞ (2.54)

where αk(s, a) denotes the learning rate used when applying the update rule in
Equation 2.53 after the kth selection of action a in state s. The left-hand sum in
Equation 2.54 ensures that the learning rate is large enough to overcome initial
learning conditions, while the right-hand sum ensures that the sequence will
converge at a certain rate. Therefore, αk(s, a) = 1

k satisfies these conditions on the

“marl-book-main” — 2025/6/18 — 20:07 — page 34 — #63

34 Chapter 2

Algorithm 2 Sarsa for MDPs (with ϵ-greedy policies)

1: Initialize: Q(s, a) = 0 for all s∈ S, a∈A
2: Repeat for every episode:
3: Observe initial state s0

4: With probability ϵ: choose random action a0 ∈A
5: Otherwise: choose action a0 ∈ arg maxa Q(s0, a)
6: for t = 0, 1, 2, ... do
7: Apply action at, observe reward rt and next state st+1

8: With probability ϵ: choose random action at+1 ∈A
9: Otherwise: choose action at+1 ∈ arg maxa Q(st+1, a)

10: Q(st, at)←Q(st, at) +α
[
rt + γQ(st+1, at+1)−Q(st, at)

]
learning rate, while a constant learning rate αk(s, a) = c does not. Nonetheless,
in practice it is common to use a constant learning rate since learning rates that
meet the above conditions, while theoretically sound, can lead to slow learning.

In order for Sarsa to learn the optimal value function Q∗ and optimal policy
π∗, it must gradually modify the policy π in a way that brings it closer to
the optimal policy. To achieve this, π can be made greedy with respect to
the value estimates Q, similarly to the DP policy improvement task defined in
Equation 2.39. However, making π fully greedy and deterministic would violate
the first condition of trying all state-action combinations infinitely often. Thus,
a common technique in TD algorithms is to instead use an ϵ-greedy policy that
uses a parameter ϵ∈ [0, 1], defined as6

π(a | s) =
{

1− ϵ+ ϵ
|A| if a∈ arg maxa′∈A Q(s, a′)

ϵ
|A| otherwise

. (2.55)

Thus, the ϵ-greedy policy chooses the greedy action with probability 1− ϵ,
and with probability ϵ chooses a random other action. In this way, if ϵ> 0, the
requirement to try all state-action combinations an infinite number of times is
ensured. Now, in order to learn the optimal policy π∗, we can gradually reduce
the value of ϵ to 0 during learning, such that π will gradually converge to π∗.
Pseudocode for Sarsa using ϵ-greedy policies is given in Algorithm 2.

6. Equation 2.55 assumes that there is a single greedy action with maximum value under Q. If
multiple actions with maximum value exist for a given state, then the definition can be modified to
distribute the probability mass (1− ϵ) among these actions.

“marl-book-main” — 2025/6/18 — 20:07 — page 35 — #64

Reinforcement Learning 35

Algorithm 3 Q-learning for MDPs (with ϵ-greedy policies)

1: Initialize: Q(s, a) = 0 for all s∈ S, a∈A
2: Repeat for every episode:
3: for t = 0, 1, 2, ... do
4: Observe current state st

5: With probability ϵ: choose random action at ∈A
6: Otherwise: choose action at ∈ arg maxa Q(st, a)
7: Apply action at, observe reward rt and next state st+1

8: Q(st, at)←Q(st, at) +α
[
rt + γmaxa′ Q(st+1, a′)−Q(st, at)

]
While Sarsa is based on the Bellman equation for Qπ , one can also construct

a TD update target based on the Bellman optimality equation for Q∗,

Q∗(s, a) =
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
. (2.56)

Q-learning (Watkins and Dayan 1992) is a TD algorithm that constructs
an update target based on the above Bellman optimality equation, again by
replacing the summation over states s′ and the reward functionR(s, a, s′) with
corresponding elements from the experience tuple (st, at, rt, st+1):

X = rt + γmax
a′∈A

Q(st+1, a′) (2.57)

The complete Q-learning update rule is specified as

Q(st, at)←Q(st, at) +α
[

rt + γmax
a′∈A

Q(st+1, a′)−Q(st, at)
]

. (2.58)

Pseudocode for Q-learning using ϵ-greedy policies is given in Algorithm 3.
Q-learning is guaranteed to converge to the optimal policy π∗ under the

same conditions as Sarsa (i.e., trying all state-action pairs infinitely often, and
standard stochastic approximation conditions in Equation 2.54). However, in
contrast to Sarsa, Q-learning does not require that the policy π used to interact
with the environment be gradually made closer to the optimal policy π∗. Instead,
Q-learning may use any policy to interact with the environment, so long as
the convergence conditions are upheld. For this reason, Q-learning is called
an off-policy TD algorithm while Sarsa is an on-policy TD algorithm, and this
distinction has a number of implications which we will discuss in more detail in
Chapter 8. In Section 2.7, we will use learning curves to evaluate and compare
the performance of Q-learning and Sarsa on an RL problem.

“marl-book-main” — 2025/6/18 — 20:07 — page 36 — #65

36 Chapter 2

2.7 Evaluation with Learning Curves

The standard approach to evaluate the performance of an RL algorithm on a
learning problem is via learning curves. A learning curve shows the perfor-
mance of the learned policy over increasing training time, where performance
can be measured in terms of the learning objective (e.g., discounted returns) as
well as other secondary metrics.

Figure 2.4 shows various learning curves for the Sarsa and Q-learning al-
gorithms applied to the Mars Rover problem from Section 2.2 with discount
factor γ = 0.95. In these figures, the x-axis shows the environment time steps
across episodes, and the y-axis shows the average discounted evaluation returns
achieved from the initial state, that is, Vπ(s0).7

The term “evaluation return” means that the shown returns are for the greedy
policy8 with respect to the learned action values after T learning time steps.
Thus, the plots answer the question: If we finish learning after T time steps and
extract the greedy policy, what expected returns can we expect to achieve with
this policy? The results shown here are averaged over one hundred independent
training runs, each using a different random seed to determine the outcomes
of random events (e.g., probabilistic action selections and state transitions).
Specifically, each point on a line is produced by taking the greedy policy from
each training run at that time, running one hundred independent episodes with
the policy and averaging over the resulting returns, and finally averaging over
the average returns corresponding to the one hundred training runs. The shaded
area shows the standard deviation over the averaged returns from each training
run. In Figure 2.4(b), we show the average episode lengths of the greedy policy
instead of the average returns.

In this example, Sarsa and Q-learning both learn the optimal policy π∗ which
chooses action left in state Start and action right in states Site A and Site B.
Moreover, the two algorithms basically have the same learning curves for the
evaluation returns. Figures 2.4(c) and 2.4(d) (for Q-learning) show that the
choice of the learning rate α and exploration rate ϵ can have an important impact
on the learning. In this case, the “average” learning rate αk(s, a) = 1

k performs
best for Q-learning, but for more complex MDPs with larger state and action
sets, this choice of learning rate usually leads to much slower learning compared
to appropriately chosen constant learning rates.

7. Recall that we use the term “return” as a shorthand for discounted return when the learning
objective is to maximize discounted returns.
8. In policy gradient RL algorithms, discussed in Chapter 8, the algorithm learns a probabilistic
policy for which there usually is no “greedy” version. In this case, the evaluation return just uses
the current policy without modification.

“marl-book-main” — 2025/6/18 — 20:07 — page 37 — #66

Reinforcement Learning 37

0 100 200 300 400 500
Environment time steps

2

0

2

4

6

Ev
al

ua
tio

n
re

tu
rn

s

Optimal policy (V * (s0) = 4.1)
Sarsa
Q-Learning

(a) Average evaluation returns for Sarsa
and Q-learning

0 100 200 300 400 500
Environment time steps

1

2

3

4

5

Ev
al

ua
tio

n
ep

iso
de

 le
ng

th

Sarsa
Q-Learning

(b) Average episode length for Sarsa and
Q-learning

0 100 200 300 400 500
Environment time steps

4

2

0

2

4

6

Ev
al

ua
tio

n
re

tu
rn

s

Optimal policy (V * (s0) = 4.1)
Q-Learning (= 0.01)
Q-Learning (= 0.03)
Q-Learning (= 0.05)
Q-Learning (= 0.1)
Q-Learning (k(s, a) = 1

k)

(c) Q-learning with different learning
rates α (ϵ linearly decayed from 1 to 0)

0 100 200 300 400 500
Environment time steps

4

2

0

2

4

6

Ev
al

ua
tio

n
re

tu
rn

s

Optimal policy (V * (s0) = 4.1)
Q-Learning (k = max(1 k

250 , 0))
Q-Learning (k = 1 k

500)
Q-Learning (= 1.0)
Q-Learning (= 0.5)
Q-Learning (= 0.0)

(d) Q-learning with different exploration
rates ϵ (α = 0.1)

Figure 2.4: Results when applying the Sarsa and Q-learning algorithms to
the Mars Rover problem (Figure 2.3, page 23) with γ = 0.95, averaged over
one hundred independent training runs. The shaded area shows the standard
deviation over the averaged discounted returns from each training run. The
dashed horizontal line marks the optimal value of the initial state (V∗(s0)),
computed via value iteration. In Figures 2.4(a) and 2.4(b), the algorithms use a
scheduled learning rate of αk(s, a) = 1

k where k is the number of times state s has
been visited and action a was applied. The exploration rate is linearly decayed
from ϵ= 1 to ϵ= 0 over time steps t = 0, ..., 500 (i.e., ϵt = 1− t 1

500).

“marl-book-main” — 2025/6/18 — 20:07 — page 38 — #67

38 Chapter 2

Note that the x-axis of the plots show the cumulative training time steps across
episodes. This is not to be confused with the time steps t within episodes. The
reason that we show cumulative time steps instead of the number of completed
episodes on the x-axis is that the latter can potentially skew the comparison of
algorithms. For instance, suppose we show training curves for algorithms A and
B with number of episodes on the x-axis. Suppose both algorithms eventually
reach the same performance with their learned policies, but algorithm A learns
much faster than algorithm B (i.e., the curve for A rises more quickly). In
this case, it could be that in the early episodes, algorithm A explored many
more actions (i.e., time steps) than algorithm B before finishing the episode,
which results in a larger number of collected experiences (or training data) for
algorithm A. Thus, although both algorithms completed the same number of
episodes, algorithm A will have done more learning updates (assuming updates
are done after each time step, as in the TD methods presented in this chapter),
which would explain the seemingly faster growth in the learning curve. If we
instead showed the learning curve for both algorithms with cumulative time
steps across episodes, then the learning curve for A might not grow faster than
the curve for B.

Recall that at the beginning of this chapter (Figure 2.1, page 20), we defined
an RL problem as the combination of a decision process model (e.g., MDP) and
a learning objective for the policy (e.g., maximizing the expected discounted
return in each state for a specific discount factor). When evaluating a learned
policy, we want to evaluate its ability to achieve this learning objective. For
example, our Mars Rover problem specifies a discounted return objective with
the discount factor γ = 0.95. Therefore, our learning curves in Figure 2.4(a)
show exactly this objective on the y-axis.

However, in some cases, it can be useful to show undiscounted returns (i.e.,
γ = 1) for a learned policy, even if the RL problem specified a discounted return
objective with a specific discount factor γ < 1. The reason is that undiscounted
returns can sometimes be easier to interpret than discounted returns. For exam-
ple, suppose we want to learn an optimal policy for a video game in which the
agent controls a space ship and receives a +1 score (reward) for each destroyed
enemy. If in an episode the agent destroys ten enemies at various points in
time, the undiscounted return will be ten but the discounted return will be less
than ten, making it more difficult to understand how many enemies the agent
destroyed. More generally, when analyzing a learned policy, it is often useful to
show additional metrics besides the returns, such as win rates in competitive
games, or episode lengths as we did in Figure 2.4(b).

When showing undiscounted returns and additional metrics such as episode
lengths, it is important to keep in mind that the evaluated policy was not actually

“marl-book-main” — 2025/6/18 — 20:07 — page 39 — #68

Reinforcement Learning 39

trained to maximize these objectives — it was trained to maximize the expected
discounted return for a specific discount factor. In general, two RL problems that
differ only in their discount factor but are otherwise identical (i.e., same MDP)
may have different optimal policies. In our Mars Rover example, a discounted
return objective with discount factor γ = 0.95 leads to an optimal policy that
chooses action left in the initial state, achieving a value of V∗(Start) = 4.1. In
contrast, a discount factor of γ = 0.5 leads to an optimal policy that chooses
action right in the initial state, achieving a value of V∗(Start) = 0. Both policies
are optimal, but they are for two different learning problems that use different
discount factors. Both learning problems are valid, and the choice of γ is part
of designing the learning problem.

2.8 Equivalence of R(s, a, s′) and R(s, a)

Our definition of MDPs uses the most general definition of reward functions,
R(st, at, st+1), by conditioning on the current state st and action at as well as the
successor state st+1. Another definition for reward functions commonly used in
the RL literature is to condition only on st and at, that is,R(st, at). This may be
a point of confusion for newcomers to RL. However, these two definitions are
in fact equivalent, in that for any MDP usingR(st, at, st+1) we can construct an
MDP usingR(st, at) (all other components are identical to the original MDP)
such that a given policy π produces the same expected returns in both MDPs.

Recall the Bellman equation for the state-value function Vπ that we have
been using so far for an MDP with reward functionR(s, a, s′):

Vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γVπ(s′)

]
(2.59)

Assuming that R(s, a, s′) depends only on s, a, we can rewrite the above
equation as

Vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

T (s′ | s, a)
[
R(s, a) + γVπ(s′)

]
(2.60)

=
∑
a∈A

π(a | s)
[∑

s′∈S

T (s′ | s, a)R(s, a) +
∑
s′∈S

T (s′ | s, a)γVπ(s′)
]

(2.61)

=
∑
a∈A

π(a | s)
[
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)Vπ(s′)
]
. (2.62)

This is the simplified Bellman equation for MDPs using a reward function
R(s, a). Going the reverse direction fromR(s, a) toR(s, a, s′), we know that by

“marl-book-main” — 2025/6/18 — 20:07 — page 40 — #69

40 Chapter 2

definingR(s, a) to be the expected reward under the state transition probabilities

R(s, a) =
∑
s′∈S

T (s′ | s, a)R(s, a, s′) (2.63)

and plugging this into Equation 2.62, we recover the original Bellman equation
that uses R(s, a, s′), given in Equation 2.59. Analogous transformations can
be done for the Bellman equation of the action-value function Qπ, as well as
the Bellman optimality equations for V∗/Q∗. Therefore, one may use either
R(s, a, s′) orR(s, a).

In this book, we useR(s, a, s′) for the following pedagogical reasons:

1. Using R(s, a, s′) can be more convenient when specifying examples of
MDPs, since it is useful to show the differences in reward for multiple pos-
sible outcomes of an action. In our Mars Rover MDP shown in Figure 2.3,
when using R(s, a) we would have to show the expected reward (Equa-
tion 2.63) on the transition arrow for action right from the initial state Start
(rather than showing the different rewards for the two possible outcomes),
which would be less intuitive to read.

2. The Bellman equations when using R(s, a, s′) show a helpful visual
congruence with the update targets used in TD algorithms. For exam-
ple, the Q-learning update target, rt + γmaxa′ Q(st+1, a′), appears in a
corresponding form in the Bellman optimality equation (in the [] brackets):

Q∗(s, a) =
∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
(2.64)

And similarly for the Sarsa update target and the Bellman equation for Qπ

(see Section 2.6).

Finally, we mention that most of the original MARL literature presented in
Chapter 6 in fact defined reward functions asR(s, a). To stay consistent in our
notation, we will continue to useR(s, a, s′) in the remainder of this book, noting
that equivalent transformations fromR(s, a) toR(s, a, s′) always exist.

2.9 Summary

This chapter has provided a concise introduction to the basic concepts of single-
agent RL. The most important concepts are the following:

• The Markov decision process (MDP) is the standard model to define the
environment in which the agent chooses actions over a number of time steps.
It defines the possible states of the environment, the actions available to the
agent, how the environment state changes in response to the different actions,

“marl-book-main” — 2025/6/18 — 20:07 — page 41 — #70

Reinforcement Learning 41

and the rewards received by the agent. The agent uses a policy that assigns
probabilities to the available actions in each state.

• A learning problem in RL is defined by the combination of a decision process
model (e.g., MDP) and a learning objective. The most common learning
objective used in single-agent RL is to find a decision policy for the agent
that maximizes the expected discounted return, defined as the sum of rewards
received over time and weighted by a discount factor.

• The Markov property in MDPs means that the future states and rewards are
independent of past states and actions, given the current state and action. This
property allows us to define recursive value functions for policies, known as
Bellman equations, that return the “value” of a policy in each possible state
of the environment. The value is the expected return when starting in the
given state and following the policy to select actions. Value functions can
also be defined for state-action pairs, where a given action is first chosen and
subsequent actions are chosen by the policy.

• Dynamic programming (DP) and temporal-difference learning (TD) are two
families of algorithms that can learn optimal policies in MDPs. DP algorithms
require complete knowledge of the MDP specification and use procedures
such as value iteration to learn optimal value functions. TD algorithms build
on DP theory but do not need complete knowledge of the MDP, instead
learning optimal policies by repeatedly exploring actions in the environment
and observing the outcomes.

• RL algorithms are evaluated via learning curves that show improvement in
expected returns over an increasing number of agent-environment interactions
during learning.

The following chapters in this part of the book will build on the above
concepts in multiple ways. First, Chapter 3 will extend the MDP model by
introducing game models in which multiple agents interact in a shared envi-
ronment. Chapter 4 will use the notion of discounted returns to define a range
of solution concepts for multi-agent games. Finally, Chapters 5 and 6 will
introduce several families of MARL algorithms that build on and extend the DP
and TD algorithms introduced in this chapter.

“marl-book-main” — 2025/6/18 — 20:07 — page 42 — #71

“marl-book-main” — 2025/6/18 — 20:07 — page 43 — #72

3 Games: Models of Multi-Agent Interaction

Chapter 1 introduced the general idea of agents that interact in a shared envi-
ronment to achieve specified goals. In this chapter, we will define this idea
formally via models of multi-agent interaction. These models are rooted in
game theory, and are hence called games. The game models we will introduce
define a hierarchy of increasingly complex models, shown in Figure 3.1.

The most basic model is the normal-form game, in which there are multiple
agents but there is no evolving environment state. Further up the hierarchy are
stochastic games, which define environment states that change over time as a
result of the agents’ actions and probabilistic state transitions. At the top of
the game hierarchy are partially observable stochastic games, in which agents
do not directly observe the full environment but instead observe incomplete
and/or noisy information about the environment. Games may also use different
assumptions about what the agents know about the game. We will introduce
each of the game models in turn and provide examples.1

Note that this chapter focuses on defining models of multi-agent interaction,
but does not define what it means to solve the games — that is, what it means for
agents to act optimally. There are many possible solution concepts which define
optimal policies for agents in games. We will introduce a range of solution
concepts for games in Chapter 4.

1. There exists another type of game model, not covered in this chapter, called “extensive-form
game.” The primary distinction is that in extensive-form games, agents choose actions in turns (one
after another) while in the games we introduce, agents choose actions simultaneously (at the same
time). We focus on simultanous-move games since most MARL research uses this type of game
model, and they are a more natural extension of the MDP-type models used in RL. Transformations
between extensive-form games and (sequential) simultanous-move games are possible (Shoham
and Leyton-Brown 2008).

“marl-book-main” — 2025/6/18 — 20:07 — page 44 — #73

44 Chapter 3

Partially Observable Stochastic Game
n agents

m states - partially observed

Stochastic Game
n agents

m states - fully observed

Repeated
Normal-Form Game

n agents
1 state

Markov
Decision Process

1 agent
m states

Figure 3.1: Hierarchy of game models used in this book. Partially observable
stochastic games (POSGs) include stochastic games as a special case in which
the states and agents’ chosen actions are fully observable by all agents. Stochas-
tic games include repeated normal-form games as a special case in which there
is only a single environment state, and they include Markov decision processes
(MDPs) as a special case in which there is only a single agent.

3.1 Normal-Form Games

A normal-form game (also known as “strategic-form” game) defines a single
interaction between two or more agents. Similar to how the multi-armed bandit
problem (Section 2.2) can be seen as the basic kernel of the MDP, the normal-
form game can be seen as the basic building block of all game models introduced
in this chapter.

Definition 2 (Normal-form game) A normal-form game consists of:

• Finite set of agents I = {1, ..., n}
• For each agent i∈ I:

– Finite set of actions Ai

– Reward functionRi : A→R, where A = A1× ...×An

A normal-form game proceeds as follows: First, each agent i∈ I selects a
policy πi : Ai→ [0, 1], which assigns probabilities to the actions available to the
agent, so that

∑
ai∈Ai

πi(ai) = 1. Each agent then samples an action ai ∈Ai with

“marl-book-main” — 2025/6/18 — 20:07 — page 45 — #74

Games: Models of Multi-Agent Interaction 45

probability πi(ai) given by its policy. The resulting actions of all agents form a
joint action, a = (a1, ..., an). Finally, each agent i receives a reward based on its
reward function and the joint action, ri =Ri(a).

Normal-form games can be classified based on the relationship between the
reward functions of agents:

• In a zero-sum game, the sum of the agents’ rewards is always 0, i.e.,∑
i∈IRi(a) = 0 for all a∈A.2 In zero-sum games with two agents, i and

j,3 one agent’s reward function is simply the negative of the other agent’s
reward function, i.e.,Ri =−Rj.

• In a common-reward game, all agents receive the same reward, i.e.,Ri =Rj

for all i, j∈ I.
• In a general-sum game, there are no restrictions on the relationship of reward

functions.

Normal-form games with two agents are also referred to as matrix games
because, in this case, the reward function can be compactly represented as a
matrix.4 Figure 3.2 shows three example matrix games. Agent 1’s action is to
choose the row position, and agent 2’s action is to choose the column position.
The values (r1, r2) in the matrix cells show the agents’ rewards for each possible
joint action. Figure 3.2(a) shows the Rock-Paper-Scissors game in which each
agent chooses one of three possible actions (R,P,S). This is a zero-sum game
(i.e., r1 =−r2) since for each action combination, one agent wins (+1 reward)
and the other agent loses (-1 reward), or there is a draw (0 reward to both).
Figure 3.2(b) shows a “coordination” game with two actions (A,B) for each
agent, and agents must select the same action to receive a positive reward. This
game is common-reward (i.e., r1 = r2), hence it suffices to show a single reward
in the matrix cells which both of the agents receive. Lastly, Figure 3.2(c) shows
a widely studied game called the Prisoner’s Dilemma, which is a general-sum
game. Here, each agent chooses to either cooperate (C) or defect (D). While
mutual cooperation would give both agents the second-highest reward, each
agent is individually incentivized to defect since this is the “dominant action,”
meaning that D always achieves higher rewards compared to C. What makes

2. Zero-sum games are a special case of constant-sum games, in which the agents’ rewards sum to
a constant.
3. For games with two agents, we often use i and j to refer to the two agents in formal descriptions,
and we use 1 and 2 to refer to the agents in specific examples.
4. Some game theory literature uses the term “bimatrix game” to specifically refer to general-sum
games that require two matrices to define the agents’ reward functions, and “matrix game” for
games that require only a single matrix to define the reward functions. This book uses “matrix
game” in both cases.

“marl-book-main” — 2025/6/18 — 20:07 — page 46 — #75

46 Chapter 3

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

(a) Rock-Paper-Scissors

A B
A 10 0
B 0 10

(b) Coordination Game

C D
C -1,-1 -5,0
D 0,-5 -3,-3

(c) Prisoner’s Dilemma

Figure 3.2: Three normal-form games with two agents (i.e., matrix games).

these and many other games interesting is that one agent’s reward depends on
the choices of the other agents, which are not known in advance.

Much effort has been devoted to developing classifications of normal-form
games and understanding the relationship between different games (Rapoport
and Guyer 1966; Kilgour and Fraser 1988; Walliser 1988; Robinson and Go-
forth 2005; Bruns 2015; Marris, Gemp, and Piliouras 2023). For instance, in
Section 11.2, we provide a comprehensive listing of all structurally distinct and
strictly ordinal 2× 2 normal-form games (meaning games with two agents and
two actions each), of which there are seventy-eight in total.

In the remainder of the book, we will use “normal-form game” when making
general statements about n-agent normal-form games, and we will sometimes
use “matrix game” when discussing specific examples of normal-form games
for two agents.

3.2 Repeated Normal-Form Games

A normal-form game, as presented in Section 3.1, defines a single interaction
between two or more agents. The most basic way to extend this to sequential
multi-agent interactions is by repeating the same normal-form game for a finite
or infinite number of times, giving rise to the repeated normal-form game. This
type of game model is among the most widely studied models in game theory.
For example, the repeated Prisoner’s Dilemma has been extensively studied in
the game theory literature (e.g., Axelrod 1984) and still serves as an important
example of a sequential social dilemma.

Given a normal-form game Γ= (I, {Ai}i∈I , {Ri}i∈I), a repeated normal-form
game repeats the same game Γ over T time steps, t = 0, 1, 2, ..., T − 1, where
T is either finite or infinite. At each time step t, each agent i∈ I samples an
action at

i ∈Ai with probability given by its policy, πi(at
i | ht). The policy is now

conditioned on the joint-action history, ht = (a0, ..., at−1), which contains all

“marl-book-main” — 2025/6/18 — 20:07 — page 47 — #76

Games: Models of Multi-Agent Interaction 47

joint actions before the current time step t (for t = 0, the history is the empty set).
Given the joint action at = (at

1, ..., at
n), each agent i receives a reward rt

i =Ri(at).
Besides the time index t, the important addition in repeated normal-form

games is that policies can now make decisions based on the entire history of
past joint actions, giving rise to a complex space of policies that agents can use.
Typically, policies are conditioned on an internal state which is a function of the
history, f (ht). For example, a policy may be conditioned on just the most recent
joint action at−1, or on summary statistics such as the action counts of other
agents in the history. “Tit-for-Tat” is a famous policy for the game of repeated
Prisoner’s Dilemma that simply conditions on the most recent action of the
other agent, choosing to cooperate if the other agent cooperated and defecting
if the other agent defected (Axelrod and Hamilton 1981).

It is important to note that a game with finite repetitions is not in general
equivalent to the same game with infinite repetitions. In finitely repeated games,
there can be “end-game” effects: if the agents know that a game will finish after
T time steps, they may choose different actions closer to the end of the game
compared to earlier in the game (see Section 6.3.3 for an example in Prisoner’s
Dilemma). For infinitely repeated games, one may specify a probability with
which each time step terminates the game. This termination probability is
related to the discount factor γ ∈ [0, 1] used in the discounted-return learning
objective in RL, in that 1− γ specifies the probability of termination in each
time step (see the discussion in Section 2.3). For γ < 1, the game still counts
as “infinite” since any finite number T > 0 of time steps will have a non-zero
probability of occurring.

In the remainder of this book, we will use the term non-repeated normal-form
game to refer to the special case when T = 1, while repeated normal-form game
refers to the case when T > 1.

3.3 Stochastic Games

While the relative simplicity of normal-form games is useful to study interac-
tions between agents, they lack the notion of an environment state which is
affected by the actions of the agents. Moving closer to the full multi-agent
system described in Section 1.1, stochastic games define a state-based envi-
ronment in which the state evolves over time based on the agents’ actions and
probabilistic state transitions (Shapley 1953).

Definition 3 (Stochastic game) A stochastic game consists of:

• Finite set of agents I = {1, ..., n}
• Finite set of states S, with subset of terminal states S̄⊂ S

“marl-book-main” — 2025/6/18 — 20:07 — page 48 — #77

48 Chapter 3

• For each agent i∈ I:

– Finite set of actions Ai

– Reward functionRi : S×A× S→R, where A = A1× ...×An

• State transition probability function T : S×A× S→ [0, 1] such that

∀s∈ S, a∈A :
∑
s′∈S

T (s, a, s′) = 1 (3.1)

• Initial state distribution µ : S→ [0, 1] such that∑
s∈S

µ(s) = 1 and ∀s∈ S̄ :µ(s) = 0 (3.2)

A stochastic game proceeds as follows: The game starts in an initial state
s0 ∈ S sampled from µ. At time t, each agent i∈ I observes the current state
st ∈ S and chooses an action at

i ∈Ai with probability given by its policy, πi(at
i | ht),

resulting in the joint action at = (at
1, ..., at

n). The policy is conditioned on the
state-action history, ht = (s0, a0, s1, a1,, st), which contains the current state st

as well as the states and joint actions from the previous time steps. This history
is observed by all agents, which is a property known as full observability. Given
the state st and joint action at, the game transitions into a next state st+1 ∈ S
with probability given by T (st, at, st+1), and each agent i receives a reward
rt

i =Ri(st, at, st+1). We also write this probability as T (st+1 | st, at) to emphasize
that it is conditioned on the state-action pair st, at. These steps are repeated
until reaching a terminal state st ∈ S̄ or completing a maximum number of T
time steps,5 after which the game terminates; or it may continue for an infinite
number of time steps if the game is non-terminating.

Similar to MDPs, stochastic games have the Markov property in that the
probability of the next state and reward is conditionally independent of the past
states and joint actions, given the current state and joint action

Pr(st+1, rt | st, at, st−1, at−1, ..., s0, a0) = Pr(st+1, rt | st, at) (3.3)

where rt = (rt
1, ..., rt

n) is the joint reward at time t. For this reason, stochastic
games are also sometimes called Markov games (e.g., Littman 1994).

As a concrete example of a stochastic game, we can model the level-based
foraging environment shown in Figure 1.2 (page 4). Each state is a vector that
specifies the x-y integer positions of all agents and items, as well as binary
flags for each item to indicate whether it has been collected. The agents’ action
spaces include actions for moving up/down/left/right, collecting an item, and
doing nothing (noop). The effect of joint actions is specified in the transition

5. Recall also Footnote 2 (page 22).

“marl-book-main” — 2025/6/18 — 20:07 — page 49 — #78

Games: Models of Multi-Agent Interaction 49

probability function T . For example, two agents that together collect an existing
item will modify the state by switching the binary flag associated with that
item (meaning that the item has been collected and no longer exists). In a
common-reward version of the game, every agent will receive a reward of +1
whenever any of the items has been collected by any agents. A general-sum
version may specify individual rewards for agents, such as +1 reward for agents
which were actually involved in the collection of an item and 0 reward for all
other agents. The game terminates after a fixed number of time steps, or when
a terminal state has been reached in which all items have been collected.

Stochastic games include repeated normal-form games as a special case in
which there is only a single state in S and there are no terminal states (i.e., S̄ = ∅).
More generally, if we define reward functions asRi(s, a), then each state s∈ S
in the stochastic game can be viewed as a non-repeated normal-form game
with rewards given by Ri(s, ·), as shown in Figure 3.3. (For a comment on
the equivalence ofRi(s, a, s′) andRi(s, a), see Section 2.8.) It is in this sense
that normal-form games form the basic building block of stochastic games.
Stochastic games also include MDPs as the special case in which there is only
a single agent in I. And, like MDPs, while the state and action sets in our
definition of stochastic games are finite (as per the original definition of Shapley
(1953)), a stochastic game can be analogously defined for continuous states and
actions. Finally, the classification of normal-form games into zero-sum games,
common-reward games, and general-sum games also carry over to stochastic
games (Section 3.1). That is, stochastic games may specify zero-sum rewards,
common rewards, or general-sum rewards.

Chapter 11 gives many more examples of state-based multi-agent environ-
ments, many of which can be modeled as a stochastic game.

3.4 Partially Observable Stochastic Games

Sitting at the top of the game model hierarchy shown in Figure 3.1, the most
general model we use in this book is the partially observable stochastic game, or
POSG for short (Hansen, Bernstein, and Zilberstein 2004). While in stochastic
games the agents can directly observe the environment state and the chosen
actions of all agents, in a POSG, the agents receive “observations” that carry
some incomplete information about the environment state and agents’ actions.
This allows POSGs to represent decision processes in which agents have limited
ability to sense their environment, such as in autonomous driving and other
robot control tasks or strategic games where players have private information
not seen by other players (e.g., card games).

“marl-book-main” — 2025/6/18 — 20:07 — page 50 — #79

50 Chapter 3

1,1 0,1
2,2 1,1

 a = (2,1)
r = (2,2)

p = 1.0

(a) Repeated normal-form game

s2

1,3 0,4
4,0 3,1

s1

1,1 0,1
2,2 1,1

s3

1,1 0,0
4,1 3,2

 a = (1,2)
r = (0,4)

p = 0.8

 p = 0.2

 a = (2,1)
r = (4,1)

 p = 1.0

p = 0.5

p = 0.5

a = (2,2)
r = (1,1)

(b) Stochastic game

s2

1,3 0,4
4,0 3,1

s1

1,1 0,1
2,2 1,1

s3

1,1 0,0
4,1 3,2

 a = (1,2)
r = (0,4)

p = 0.8

 p = 0.2

 a = (2,1)
r = (4,1)

 p = 1.0

p = 0.5

 p = 0.5

a = (2,2)
r = (1,1)

(c) POSG

Figure 3.3: Normal-form games are the basic building block of all game models
described in Chapter 3. This figure shows one example game for each type of
game model, shown as a directed cyclic graph. Each game is for two agents with
two actions each. Each node in the graph corresponds to a state and shows a
normal-form game being played in that state. We show one possible joint action
choice for each state, along with the rewards received and the probabilities of
reaching the respective next state in the outgoing arrows. For POSG, the states
are dashed to represent that agents do not directly observe the current state of
the game; instead, agents receive partial/noisy observations about the state.

“marl-book-main” — 2025/6/18 — 20:07 — page 51 — #80

Games: Models of Multi-Agent Interaction 51

In its most general form, a POSG defines state-observation probabilities
Pr(st, ot | st−1, at−1), where ot = (ot

1, ..., ot
n) is the joint observation at time t that

contains the agents’ individual observations ot
i. However, it is often the case

that observations only depend on the new environment state st and the joint
action at−1 that led to this state (and not on the previous state st−1). Thus, it is
common to define for each agent i an individual observation function Oi that
specifies probabilities over the agent’s possible observations ot

i given the state
st and joint action at−1. We give the full definition of POSGs next:

Definition 4 (Partially observable stochastic game) A partially observable
stochastic game (POSG) is defined by the same elements of a stochastic game
(Definition 3) and additionally defines for each agent i∈ I:

• Finite set of observations Oi

• Observation function Oi : A× S×Oi→ [0, 1] such that

∀a∈A, s∈ S :
∑
oi∈Oi

Oi(a, s, oi) = 1 (3.4)

A POSG proceeds similarly to a stochastic game: The game starts in an
initial state s0 ∈ S sampled from µ. At each time t, the game is in a state st ∈ S
with previous joint action at−1 ∈A (for t = 0 we set at−1 = ∅), and each agent
i∈ I receives an observation ot

i ∈Oi with probability given by its observation
function, Oi(at−1, st, ot

i). We also write this as Oi(ot
i | at−1, st) to emphasize

that the probability is conditioned on the state st and joint action at−1. Each
agent then chooses an action at

i ∈Ai based on action probabilities given by its
policy, πi(at

i | ht
i), resulting in the joint action at = (at

1, ..., at
n). The policy πi is

conditioned on agent i’s observation history ht
i = (o0

i , ..., ot
i), which includes all

of the agent’s past observations up to and including the most recent observation.
Note that an agent’s observation ot

i may or may not include the actions at−1
j

from the previous time step, as we will further discuss in the next paragraphs.
Given the joint action at, the game transitions into the next state st+1 ∈ S with
probability T (st+1 | st, at), and each agent i receives a reward rt

i =Ri(st, at, st+1).
These steps are repeated until reaching a terminal state st ∈ S̄ or completing a
maximum number of T time steps, after which the game terminates; or it may
continue for an infinite number of time steps if the game is non-terminating.

Again, the classification of zero-sum reward, common reward, and general-
sum reward also applies to the POSG model. POSGs with common rewards,
in which all agents have the same reward function, are also known as “Decen-
tralized POMDP” (Dec-POMDP) and have been widely studied in the area of
multi-agent planning (see, for example, the textbook by Oliehoek and Amato

“marl-book-main” — 2025/6/18 — 20:07 — page 52 — #81

52 Chapter 3

2016). POSGs can also be defined analogously with continuous-valued (or
mixed discrete-continuous) observations.

POSGs include stochastic games as the special case in which ot
i = (st, at−1).

They also include POMDPs as the special case in which there is only a single
agent in I. In general, the observation functions in POSGs can be used to
represent diverse observability conditions of interest. Examples include:

Unobserved actions of other agents Agents may observe the state and their
own previous action, but not the previous actions of the other agents,
that is, ot

i = (st, at−1
i). An example of this scenario is robot soccer, in

which the robots may observe the full playing field but do not directly
communicate their chosen actions to other players (especially players from
the opponent team). In this case, agents may need to infer with some
uncertainty the possible actions of other agents based on changes in the
observed environment state (e.g., inferring a pass action between two
players based on location, direction, and velocity of the ball). Another
example is a market setting in which the asset prices are observed by all
agents, but the agents’ buy/sell actions are private.

Limited view region Agents may observe a subset of the state and joint action,
that is, ot

i = (̄st, āt) where s̄t⊂ st and āt⊂ at. Such a scenario may arise if
agents have a limited view of their surrounding environment, such that an
agent may only see those parts of the state st and joint action at−1 that
are (or took place) within its view region. For example, in the partially
observable version of level-based foraging shown in Figure 3.4, the agents
have local vision fields and can only see items, other agents, and their
actions within their own vision fields. Another example is agents playing a
real-time strategy game in which parts of the game map are concealed by
“fog of war” (e.g., Vinyals et al. 2019).

Observation functions can model uncertainty in observations (i.e., noise) by
assigning non-zero probability to multiple possible observations. For example,
such uncertainty may be caused by imperfect sensors in robotics applications.
Observation functions can also model communication between agents, which
may be limited by range and can be unreliable. A communication message can
be modeled as a multi-valued vector (e.g., a bit vector) that does not modify the
environment state but can be received by other agents within their own observa-
tion if they are within a certain range of the sender. Unreliable communication
can be modeled by specifying a probability with which messages are lost (i.e.,
not received by an agent even if within sending range) or by randomly changing
parts of the message. One may even specify combined actions ai = (ai,s, ai,c)

“marl-book-main” — 2025/6/18 — 20:07 — page 53 — #82

Games: Models of Multi-Agent Interaction 53

Figure 3.4: Level-based foraging environment with partial observability. Agents
observe the world through their local vision fields (shown as gray rectangles
around the agents).

where ai,s affects the state s (such as moving around in a physical world) while
ai,c is a communication message which may be received by other agents j within
their observation oj.

In Chapter 11 (Section 11.3), we list several multi-agent environments with
partial observability used in MARL research.

3.4.1 Belief States and Filtering

In a POSG, since an agent’s observation only provides partial information about
the current state of the environment, it is typically not possible to choose optimal
actions based only on the current observation. For example, in the level-based
foraging environment shown in Figure 3.4, the optimal action for the level-1
agent may be to move toward the level-1 item to its left. However, this item is
not included in the agent’s current observation within its vision field, and so
the agent cannot infer the optimal action from its current observation alone. In
general, if the environment is only partially observed, the agents must maintain
estimates of the possible current states and their relative likelihoods based on
the history of observations. Continuing with the example, the level-1 agent may
have seen the level-1 item to its left in a previous observation, and may thus
remember its location within the observation history.

One way of defining such estimates about environment states from the per-
spective of agent i is as a belief state bt

i, which is a probability distribution over
the possible states s∈ S that the environment may be in at time t. Consider
for simplicity a POSG with only a single agent i — that is, a POMDP. The
initial belief state of the agent is given by the distribution of initial states, that is,

“marl-book-main” — 2025/6/18 — 20:07 — page 54 — #83

54 Chapter 3

b0
i =µ. After taking action at

i and observing ot+1
i , the belief state bt

i is updated
to bt+1

i by computing a Bayesian posterior distribution

bt+1
i (s′)∝

∑
s∈S

bt
i(s)T (s′ | s, at

i)Oi(ot+1
i | at

i, s′). (3.5)

The resulting belief state is exact in the sense that it retains all relevant infor-
mation from the observation history. This belief state is known as a “sufficient
statistic” because it carries enough information needed to choose optimal ac-
tions and to make predictions about the future. The process of updating belief
states based on observations is also known as (belief state) filtering.

Unfortunately, the space complexity of storing such exact belief states and the
time complexity of updating them using the Bayesian update from Equation 3.5
are each exponential in the number of variables that define the state, making
it intractable for complex environments. Hence, developing algorithms for
efficient approximate filtering has been the subject of much research; see, for
example, Albrecht and Ramamoorthy (2016) and discussions therein.

In a POSG with more than one agent, the definition of belief states and
how to update them becomes significantly more complex. In particular, since
agents may not observe the chosen actions of other agents and their resulting
observations, the agents now also have to infer probabilities over the possible
observations and actions of other agents, which in turn requires knowledge of
their observation functions and policies (e.g., Gmytrasiewicz and Doshi 2005;
Oliehoek and Amato 2016). However, as we will discuss in Section 3.6, in
MARL, we typically assume that agents do not possess complete knowledge
about the elements of the POSG, such as S, T , and Oi (including their own
observation function), all of which are required in Equation 3.5. Thus, we will
not dwell further on the intricacies of defining exact belief states in multi-agent
contexts.

To achieve some form of filtering without knowledge of these elements, deep
RL algorithms often use recurrent neural networks (discussed in Section 7.5.2)
to process observations sequentially. The output vector of the recurrent network
learns to encode information about the current state of the environment and
can be used to condition other functions of the agent such as value and policy
networks. Part II of this book will discuss how MARL algorithms can integrate
such deep learning models in order to learn and operate in POSGs. See also
Section 8.3 for a further discussion on this topic.

“marl-book-main” — 2025/6/18 — 20:07 — page 55 — #84

Games: Models of Multi-Agent Interaction 55

3.5 Modeling Communication

The game models introduced in this chapter are very general and can represent
various multi-agent environments, such as the application examples discussed
in Section 1.3. Stochastic games and POSGs can also model communication
between agents by including communication actions that agents can use to
send messages to other agents. This section will discuss several ways in which
communication actions can be modeled.

Intuitively, we can view communication as a type of action that can be
observed by other agents but does not affect the state of the environment. For
an agent i, we can model the action space as a combination of two sets

Ai = Xi×Mi (3.6)

where Xi includes environment actions that affect the environment state (such
as the move and collect actions in level-based foraging) and Mi includes the
communication actions. Thus, each action (xi, mi)∈Ai specifies both an envi-
ronment action and a communication action at the same time. At a basic level,
Mi may be defined as a set of possible messages {m1, m2, m3, ...}, which may
be discrete symbols or continuous values. It is also possible to define more
complex messages as multi-valued vectors, in which the vector elements may
specify discrete or continuous values, or a combination of both. We could also
include ∅ in Mi to represent an empty message.

In a stochastic game, each agent observes the current state st and the previous
joint action at−1. Thus, each agent i’s communication action (message) mt−1

i ∈
Mi is observed (i.e., received) by all other agents as part of the joint action at−1.
In contrast to environment actions Xi, communication actions Mi do not affect
the next state st+1 of the environment. Formally, let M =×i∈IMi, then the state
transition probabilities are independent of M, that is,

∀s, s′ ∈ S ∀a∈A, m∈M : T (s′ | s, a) = T (s′ | s, ⟨(ax
1, m1), ..., (ax

n, mn)⟩) (3.7)

where ax
i refers to the environment action component of agent i in joint action a

and the tuple ⟨(ax
1, m1), ..., (ax

n, mn)⟩ is a joint action in which the agents use the
same environment actions as in a but their communication actions are replaced
by m = (m1, ..., mn). Note that, based on this definition, communications are
ephemeral in that they last only for a single time step. However, since agents
can see the state-action history h that includes all past states and joint actions,
they can in principle remember past messages.

In a POSG, we can also model noisy and unreliable communication via the
agents’ observation functions Oi(ot

i | at−1, st). For example, an agent i’s obser-
vation could be defined as a vector ot

i = [̄st, wt−1
1 , ..., wt−1

n], where s̄t contains

“marl-book-main” — 2025/6/18 — 20:07 — page 56 — #85

56 Chapter 3

some partial information about the state st, and wt−1
j is the communication

message mt−1
j sent by agent j at time t− 1. To model noisy communication, Oi

could specify wt−1
j = f (mt−1

j) where f can modify the message in some way. For
example, if mt−1

j is continuous-valued, then we could specify f (mt−1
j) = mt−1

j + η
where η is a random noise component sampled from a Gaussian distribution.
Oi can also model message loss, by specifying a probability with which wt−1

j
is set to ∅ to represent the case that the message from agent j was not received.
Additional communication constraints can be modeled via Oi, such as limited
communication ranges, by setting wt−1

j to ∅ if agents i and j are not within
a communication range. Again, since agents have access to the history of
observations, they can in principle remember past received messages.

The agents may use messages to communicate a variety of information,
such as sharing their own observations about the state of the environment or
communicating their intended actions and plans. In the level-based foraging
example, the set Mi may contain a message corresponding to each possible
location in the grid-world, and these messages could be used by the agents
to communicate their intended goal locations to other agents or to tell other
agents about item locations they have discovered. However, in reinforcement
learning, the standard assumption is that agents do not know the meaning of
the actions in Ai, including the communication actions. (See Section 3.6 for
further discussion of knowledge assumptions.) Therefore, each communication
action in Mi is an abstract action for agent i just like any environment action in
Xi, and the agents have to learn the meaning of actions via repeated trials and
observations. For communication actions, there is also the added difficulty that
agents need to learn how to interpret the messages sent by other agents. This
opens the possibility that the agents can learn and evolve a shared language or
communication protocol (Foerster et al. 2016; Sukhbaatar, Szlam, and Fergus
2016; Wang, He, et al. 2020; Guo et al. 2022).

The learning algorithms we will present in the later chapters are general
in that they learn policies over any given action sets Ai, which may or may
not include communication actions. While communication actions may be
modeled as part of Ai (such as discussed earlier), in the remainder of this book
we will keep our descriptions general and will not give special consideration to
communication actions.

3.6 Knowledge Assumptions in Games

What do the agents know about the environment they interact in and how it
works? In other words, what do agents know about the game they are playing?

“marl-book-main” — 2025/6/18 — 20:07 — page 57 — #86

Games: Models of Multi-Agent Interaction 57

In game theory, the standard assumption is that all agents have knowledge
of all components that define the game; this is referred to as a “complete
knowledge game” (Owen 2013). For normal-form games, this means that the
agents know the action spaces and reward functions of all agents (including
their own). For stochastic games and POSGs, agents also know the state space
and state transition function, as well as the observation functions of all agents.
Knowledge of these components can be utilized in different ways. For example,
if agent i knows the reward functionRj of another agent j, then agent i may be
able to estimate the best-response action (Section 4.2) of agent j, which in turn
could inform the optimal action for agent i. If an agent knows the transition
function T , it may predict the effects of its actions on the state and plan its
actions several steps into the future.

However, in most real-world applications of interest (such as those mentioned
in Chapter 1), it is infeasible to obtain accurate and complete specifications
of these components. For such applications, often the best we can obtain is
a simulator of these components that can generate samples of states, (joint)
rewards, and (joint) observations. For example, we may have access to a
simulator T̂ that, given an input state s and joint action a, can produce samples
of joint rewards and successor states (r = (r1, ..., rn), s′)∼ T̂ (s, a), such that

Pr
{
T̂ (s, a) = (r, s′)

}
≈T (s′ | s, a)

∏
i∈I

[Ri(s, a, s′) = ri]1 (3.8)

where [x]1 = 1 if x is true, else [x]1 = 0.
In MARL, we usually operate at the other end of the knowledge spectrum:

agents typically do not know the reward functions of other agents, nor even
their own reward function; and agents have no knowledge of the state transition
and observation functions (in game theory, this is also known as “incomplete
information game” (Harsanyi 1967)). Instead, an agent i only experiences the
immediate effects of its own actions, via its own reward rt

i and (in stochastic
games) the joint action at and resulting next state st+1 or (in POSG) an observa-
tion ot+1

i . Agents may use such experiences to construct models of the unknown
components in a game (such as T) or the policies of other agents.

Additional assumptions may pertain to whether certain knowledge about
the game is held mutually by all agents or not (symmetric vs. asymmetric
knowledge) and whether agents are aware of what other agents know about the
game. Are the reward functions in a game known to all agents or only to some of
the agents? If all agents have knowledge of the reward functions of each agent,
are they also aware of the fact that all agents have this knowledge, the fact that all
agents knowing the reward functions is known by all agents, and so on (common
knowledge)? While such questions and their impact on optimal decision making

“marl-book-main” — 2025/6/18 — 20:07 — page 58 — #87

58 Chapter 3

have been the subject of much research in game theory (Shoham and Leyton-
Brown 2008; Perea 2012) and agent modeling (Albrecht and Stone 2018), in
MARL they have played a relatively lesser role since the standard assumption
is that agents have no knowledge of most game components. Exceptions can
be found in MARL research for zero-sum or common-reward games, where
the specific reward structure is exploited in some way in the algorithm design.
Chapters 6 and 9 will describe several MARL algorithms of this latter category.

Lastly, it is usually assumed that the number of agents in a game is fixed, and
that this fact is known by all agents. While outside the scope of this book, it
is interesting to note that recent research in MARL has begun to tackle open
multi-agent environments in which agents may dynamically enter and leave
the environment (Jiang et al. 2020; Rahman et al. 2021; Rahman, Carlucho,
et al. 2023).

3.7 Dictionary: Reinforcement Learning ↔ Game Theory

This book lies at the intersection of reinforcement learning and game theory.
These distinct fields share a number of concepts but use different terminology,
and this book primarily uses the terminology that is common in reinforce-
ment learning. We conclude this chapter by providing a small “dictionary” in
Figure 3.5 that shows some synonymous terms between the two fields.

3.8 Summary

This chapter introduced a hierarchy of increasingly complex game models, in
which multiple agents interact in a shared environment. In summary, the main
concepts are the following:

• The normal-form game is the most basic type of game model, defining a
single interaction between two or more agents. Each agent uses a policy that
assigns probabilities to the actions available to the agent. Given a joint action
that specifies an action for each agent, each agent receives a reward and the
interaction ends. Normal-form games with two agents are also called matrix
games, since the agent’s reward functions can be represented as matrices.

• Repeated normal-form games repeat the same normal-form game over multi-
ple time steps. The policies of agents can be conditioned on the history of
past joint actions chosen by the agents.

“marl-book-main” — 2025/6/18 — 20:07 — page 59 — #88

Games: Models of Multi-Agent Interaction 59

RL (this book) GT Description

environment game Model specifying the possible actions, ob-
servations, and rewards of agents, and the
dynamics of how the state evolves over time
and in response to actions.

agent player An entity which makes decisions. “Player”
can also refer to a specific role in the game
that is assumed by an agent, for example:

• “row player” in a matrix game
• “white player” in chess

reward payoff,
utility

Scalar value received by an agent/player
after taking an action.

policy strategy Function used by an agent/player to assign
probabilities to actions. In game theory,
“(pure) strategy” is also sometimes used to
refer to actions.

deterministic X pure X X assigns probability 1 to one option, for
example:
• deterministic policy
• pure strategy
• deterministic/pure Nash equilibrium

probabilistic X mixed X X assigns probabilities ≤ 1 to options, for
example:
• probabilistic policy
• mixed strategy
• probabilistic/mixed Nash equilibrium

joint X X profile X is a tuple, typically with one element for
each agent/player, for example:

• joint reward
• deterministic joint policy
• payoff profile
• pure strategy profile

Figure 3.5: Synonymous terms in reinforcement learning (RL) and game theory
(GT). This book uses RL terminology.

“marl-book-main” — 2025/6/18 — 20:07 — page 60 — #89

60 Chapter 3

• Stochastic games additionally define an environment state that can change in
response to the agents’ actions. Agents can see the full environment state and
the previous actions of all other agents. The game terminates once it reaches
a terminal state or a maximum number of time steps; or it may continue for an
infinite number of time steps. Stochastic games include repeated normal-form
games as a special case in which there is only a single environment state, and
they include MDPs as a special case in which there is only a single agent.

• In partially observable stochastic games (POSGs), the agents make decisions
based on potentially incomplete and noisy observations about their environ-
ment. Instead of observing the complete environment state and the past
actions of other agents, POSGs define observation functions that generate
individual observations for each agent that depend on the state and past joint
action. The POSG model includes all of the other game models covered in
this book as special cases.

• Games can be categorized based on the relationship between the agents’
rewards. In zero-sum games, the agents’ rewards always sum up to zero. In
common-reward games, each agent receives the same reward. General-sum
games are the most general games and do not define any restrictions on the
relationship of reward functions.

• Communication can be modeled in stochastic games and POSGs by including
special communication actions. These actions can be observed by other
agents but do not affect the environment state. POSGs can also model noisy
and unreliable communication channels with limited range.

• Different assumptions can be made about what knowledge the agents have
about the different elements that define a game, such as the state transition
probabilities and reward functions. In MARL, the standard assumption is
that the agents do not know these elements.

Many of the dimensions of MARL listed in Figure 1.4 (page 8) are determined
in the specification of a game. Similarly to single-agent RL, a learning problem
in MARL is given by the combination of a game model and a learning objective
for the agents. In Chapter 4, we will introduce a range of solution concepts that
can be used as learning objectives in games.

“marl-book-main” — 2025/6/18 — 20:07 — page 61 — #90

4 Solution Concepts for Games

What does it mean for agents to interact optimally in a multi-agent system?
In other words, what is a solution to a game? This is a central question of
game theory, and many different solution concepts have been proposed that
specify when a collection of agent policies constitutes a stable or desirable
outcome. While Chapter 3 introduced the basic game models to formalize
multi-agent environments and interaction, this chapter will introduce a series
of solution concepts. Together, a game model and solution concept define a
learning problem in MARL (Figure 4.1).

For common-reward games, in which all agents receive the same reward,
a straightforward definition for a solution is to maximize the expected return
received by all agents (but finding such a solution may not be simple at all, as
we will see in later chapters). However, if the agents have differing rewards, the
definition of a solution concept becomes more complicated.

In general, a solution to a game is a joint policy that consists of one policy
for each agent and satisfies certain properties. These properties are expressed in
terms of the expected returns yielded to each agent under the joint policy and
the relations between the agents’ returns. Thus, this chapter will begin by giving
a universal definition of expected returns that applies to all of the game models
introduced in Chapter 3. Using this definition, we will introduce a hierarchy
of increasingly general equilibrium solution concepts that include the minimax
equilibrium, Nash equilibrium, and correlated equilibrium. We will also discuss
solution refinements such as Pareto-optimality and social welfare and fairness,
and alternative solution concepts such as no-regret. We finish the chapter with a
discussion of the computational complexity of computing Nash equilibria.

Note that our definitions of solution concepts and their stated existence prop-
erties assume finite game models, as defined in Chapter 3. In particular, we
assume finite state, action, and observation spaces, and a finite number of agents.
Games with infinite elements, such as continuous actions and observations, can

“marl-book-main” — 2025/6/18 — 20:07 — page 62 — #91

62 Chapter 4

MARL Problem
Game Model

e.g., normal-form game,
stochastic game, POSG

Solution Concept
e.g., Nash equilibrium,

social welfare, ...
= +

Figure 4.1: A MARL problem is defined by the combination of a game model,
which defines the mechanics of the multi-agent system and interactions, and a
solution concept, which specifies the desired properties of the joint policy to be
learned. (See also Figure 2.1, page 20.)

use analogous definitions (e.g., by using densities and integrals) but may have
different existence properties for solutions.1

Game theory has produced a wealth of knowledge on foundational questions
about solution concepts, including: For a given type of game model and solution
concept, is a solution guaranteed to exist in the game? Is the solution unique
(i.e., only one solution exists) or are there potentially many solutions, even
infinitely many? And is a given learning and decision rule, when used by all
agents, guaranteed to converge to a solution? For a more in-depth treatment
of such questions, we recommend the books of Fudenberg and Levine (1998),
Young (2004), Shoham and Leyton-Brown (2008), and Owen (2013).

4.1 Joint Policy and Expected Return

A solution to a game is a joint policy, π = (π1, ...,πn), which satisfies certain
requirements defined by the solution concept in terms of the expected return,
Ui(π), yielded to each agent i under the joint policy. We seek a universal
definition of the expected return Ui(π), which applies to all of the game models
introduced in Chapter 3, so that our definitions of solution concepts also apply
to all game models. Thus, we will define the expected return in the context of
the POSG model (Section 3.4), which is the most general game model used in
this book and includes both stochastic games and normal-form games.

We start by introducing some additional notation. In a POSG, let ĥt =
{(sτ , oτ , aτ)t−1

τ=0, st, ot} denote a full history up to time t, consisting of the states,
joint observations, and joint actions of all agents in each time step before t, and
the state st and joint observation ot at time t. The function σ(ĥt) = (o0, ..., ot)

1. For example, every two-agent zero-sum normal-form game with finite action spaces has a unique
minimax game value, but zero-sum games with continuous actions exist that do not have a minimax
game value (Sion and Wolfe 1957). Sufficient conditions for equilibrium existence in continuous
games have been studied in works such as Debreu (1952), Fan (1952), Glicksberg (1952), and
Dasgupta and Maskin (1986).

“marl-book-main” — 2025/6/18 — 20:07 — page 63 — #92

Solution Concepts for Games 63

returns the history of joint observations from the full history ĥt, and we some-
times abbreviate σ(ĥt) to ht if it is clear from context. We define the probability
of a joint observation, O(ot | at−1, st), as the product

∏
i∈I Oi(ot

i | at−1, st).
To make our definitions valid for both finite and infinite time steps, we use

discounted returns2 and assume the standard convention of absorbing states,
which we defined in Section 2.3. That is, once an absorbing state has been
reached, the game will subsequently always transition into that same state with
probability 1 and give a reward of 0 to all agents. To simplify our definitions
below, we also assume that the observation functions and policies of all agents
become deterministic (i.e., assign probability 1 to a certain observation and
action, respectively) once an absorbing state has been reached. Thus, our
definitions encompass infinite episodes as well as episodes that terminate after
a finite number of time steps, including non-repeated normal-form games that
always terminate after a single time step.3

In the following, we provide two equivalent definitions of expected returns.
The first definition is based on enumerating all full histories in the game, while
the second definition is based on a Bellman-style recursion of value computa-
tions. These definitions are equivalent, but can provide different perspectives
and have been used in different ways. In particular, the first definition resembles
a linear sum and may be easier to interpret, while the second definition uses
a recursion that can be operationalized such as in value iteration for games
(introduced in Section 6.1).

History-based expected return: Given a joint policy π, we can define the
expected return for agent i under π by enumerating all possible full histories
and summing the returns for agent i in each history, weighted by the probability
of generating the history under the POSG and joint policy π. Formally, define
the set Ĥ to contain all full histories ĥt for t→∞.4 Then, the expected return
for agent i under joint policy π is given by

Ui(π) = lim
t→∞

Eĥt∼(µ,T ,O,π)

[
ui(ĥt)

]
(4.1)

=
∑
ĥt∈Ĥ

Pr(ĥt |π) ui(ĥt) (4.2)

2. Alternative definitions based on average rewards instead of discounted returns are also possible
for games (Shoham and Leyton-Brown 2008).
3. In the context of non-repeated normal-form games, the expected return for an agent simply
becomes the expected reward of that agent, so we use the term “expected return” in all game models
including non-repeated normal-form games.
4. Recall from Chapter 3 that we assume finite game models, and that at−1 before time t = 0 is the
empty set.

“marl-book-main” — 2025/6/18 — 20:07 — page 64 — #93

64 Chapter 4

where Pr(ĥt |π) is the probability of full history ĥt under π,

Pr(ĥt |π) =µ(s0)O(o0 | ∅, s0)
t−1∏
τ=0

π(aτ | hτ)T (sτ+1 | sτ , aτ)O(oτ+1 | aτ , sτ+1)

(4.3)
and ui(ĥt) is the discounted return for agent i in ĥt,

ui(ĥt) =
t−1∑
τ=0

γτRi(sτ , aτ , sτ+1) (4.4)

with discount factor γ ∈ [0, 1].
We use π(aτ | hτ) to denote the probability of joint action aτ under joint policy

π after joint-observation history hτ . If we assume that agents act independently,
then we can define

π(aτ | hτ) =
∏
j∈I

πj(aτ
j | hτj). (4.5)

If agents do not act independently, such as in correlated equilibrium (Section 4.6)
and methods such as central learning (Section 5.3.1), then π(aτ | hτ) can be
defined accordingly.

Recursive expected return: Analogous to the Bellman recursion used in
MDP theory (Section 2.4), we can define the expected return for agent i under
joint policy π via two interlocked functions Vπ

i and Qπ
i , defined below. In the

following, we use s(ĥ) to denote the last state in ĥ (i.e., s(ĥt) = st), and we use ⟨⟩
to denote the concatenation operation.

Vπ
i (ĥ) =

∑
a∈A

π(a |σ(ĥ))Qπ
i (ĥ, a) (4.6)

Qπ
i (ĥ, a) =

∑
s′∈S

T (s′ | s(ĥ), a)

[
Ri(s(ĥ), a, s′) + γ

∑
o′∈O

O(o′ | a, s′)Vπ
i (⟨ĥ, a, s′, o′⟩)

]
(4.7)

We can understand Vπ
i (ĥ) as the expected return, also called value, for agent i

when agents follow the joint policy π after the full history ĥ. Similarly, Qπ
i (ĥ, a)

is the expected return for agent i when agents execute the joint action a after ĥ
and then follow π subsequently. Given Equations 4.6 and 4.7, we can define
the expected return for agent i from the initial state of the game as

Ui(π) =Es0∼µ,o0∼O(·|∅,s0)
[
Vπ

i (⟨s0, o0⟩)
]

. (4.8)

The equivalence of the history-based and recursive definitions for Ui can,
intuitively, be seen by viewing the former as enumerating all possible infinite
full histories, while the latter recursively constructs an infinite tree rooted in the
initial state s0 (or, one tree for each possible initial state s0∼µ) in which the

“marl-book-main” — 2025/6/18 — 20:07 — page 65 — #94

Solution Concepts for Games 65

branching corresponds to the different possible full histories. In this chapter,
we will define most of the presented solution concepts based on Ui, with the
understanding that Ui can be defined via the two equivalent definitions given
above.

4.2 Best Response

Many existing solution concepts, including most of the solution concepts
introduced in this chapter, can be expressed compactly based on best re-
sponses. Given a set of policies for all agents other than agent i, denoted
by π−i = (π1, ...,πi−1,πi+1, ...,πn), a best response for agent i to π−i is a policy
πi that maximizes the expected return for i when played against π−i. Formally,
the set of best-response policies for agent i is defined as

BRi(π−i) = arg max
πi

Ui(⟨πi,π−i⟩) (4.9)

where ⟨πi,π−i⟩ denotes the complete joint policy consisting of πi and π−i. For
convenience and to keep our notation lean, we will sometimes drop the ⟨⟩ (e.g.,
Ui(πi,π−i)).

Note that the best response to a given π−i may not be unique, meaning that
BRi(π−i) may contain more than one best-response policy. For example, in a
non-repeated normal-form game, there may be multiple actions for agent i that
achieve equal maximum expected return against a given π−i, in which case any
probability assignment to these actions is also a best response. (We will see a
concrete example in the Rock-Paper-Scissors game in Section 4.3.)

Besides being useful for compact definitions of solution concepts, best re-
sponse operators have also been used in game theory and MARL to iteratively
compute solutions. Two example methods we will see include fictitious play
(Section 6.3.1) and joint-action learning with agent modeling (Section 6.3.2),
among others.

4.3 Minimax

Minimax is a solution concept defined for two-agent zero-sum games, in which
one agent’s reward is the negative of the other agent’s reward (Section 3.1).
A classical example of such games is the matrix game Rock-Paper-Scissors
(see Figure 3.2(a), page 46). More complex examples with sequential moves
include games such as chess and Go. The existence of minimax solutions for
normal-form games was first proven in the foundational game theory work of
von Neumann (1928) (see also von Neumann and Morgenstern (1944)).

“marl-book-main” — 2025/6/18 — 20:07 — page 66 — #95

66 Chapter 4

Definition 5 (Minimax solution) In a zero-sum game with two agents, a joint
policy π = (πi,πj) is a minimax solution if

Ui(π) = max
π′

i

min
π′

j

Ui(π′
i ,π

′
j) (4.10)

= min
π′

j

max
π′

i

Ui(π′
i ,π

′
j) (4.11)

=−Uj(π).

Every two-agent zero-sum normal-form game has a minimax solution (von
Neumann and Morgenstern 1944). Minimax solutions also exist in every two-
agent zero-sum stochastic game with finite episode length, and two-agent zero-
sum stochastic games with infinite episode length using discounted returns
(Shapley 1953). Moreover, while more than one minimax solution may exist
in a game, all minimax solutions yield the same unique value Ui(π) for agent i
(and, thus, agent j). This value is also referred to as the (minimax) value of the
game.5 Minimax values can also be defined for zero-sum games with more than
two agents (see, for example, Equation 4.17 in Section 4.4).

In a minimax solution, each agent uses a policy that is optimized against a
worst-case opponent that seeks to minimize the agent’s return. Formally, there
are two parts in the definition of minimax. Equation 4.10 is the minimum ex-
pected return that agent i can guarantee against any opponent. Here, πi is agent
i’s maxmin policy and Ui(π) is i’s maxmin value. Conversely, Equation 4.11 is
the minimum expected return that agent j can force on agent i. Here, we refer to
j’s policy πj as the minmax policy against agent i, and Ui(π) is agent i’s minmax
value. In a minimax solution, agent i’s maxmin value is equal to its minmax
value. Another way to interpret this is that the order of the min/max operators
does not matter: agent i first announcing its policy followed by agent j selecting
its policy, is equivalent to agent j first announcing its policy followed by agent i
selecting its policy. Neither agent gains from such policy announcements.

A minimax solution can be understood more intuitively as each agent using
a best-response policy against the other agent’s policy. That is, (πi,πj) is a
minimax solution if πi ∈BRi(πj) and πj ∈BRj(πi). In the non-repeated Rock-
Paper-Scissors game, there exists a unique minimax solution which is for both
agents to choose actions uniformly randomly (i.e., assign equal probability to
all actions). This solution gives an expected return of 0 to both agents. In

5. Recall that we assume finite game models. For zero-sum games with continuous actions, examples
exist that do not have a minimax game value (Sion and Wolfe 1957).

“marl-book-main” — 2025/6/18 — 20:07 — page 67 — #96

Solution Concepts for Games 67

fact, it can be verified6 in this game that if any agent i uses a uniform policy
πi, then any policy πj for the other agent j is a best-response policy to πi, and
all best-response policies πj ∈BRj(πi) yield an expected reward of 0 to agent j
(and to agent i). This example shows that best responses need not be unique,
and there can be many (even infinitely many) possible best-response policies.
However, the joint policy (πi,πj) in which both policies are uniform policies
is the only joint policy in which both policies are best responses to each other,
making it a minimax solution. In Section 4.4, we will see that this best-response
relation can also be applied to the more general class of general-sum games.

4.3.1 Minimax Solution via Linear Programming

For non-repeated zero-sum normal-form games, we can obtain a minimax
solution by solving two linear programs, one for each agent. Each linear
program computes a policy for one agent by minimizing the expected return
of the other agent. Thus, agent i minimizes the expected return of agent j, and
vice versa. We provide the linear program to compute the policy πi for agent i;
agent j’s policy is obtained by constructing a similar linear program in which the
indices i and j are swapped. The linear program contains variables xai for each
action ai ∈Ai to represent the probability of selecting action ai (thus, πi(ai) = xai

defines the policy of agent i), as well as a variable U∗
j to represent the expected

return of agent j, which is minimized as follows:

minimize U∗
j (4.12)

subject to
∑
ai∈Ai

Rj(ai, aj) xai ≤ U∗
j ∀aj ∈Aj (4.13)

xai ≥ 0 ∀ai ∈Ai (4.14)∑
ai∈Ai

xai = 1 (4.15)

In this linear program, the constraints in Equation 4.13 mean that no single
action of agent j will achieve an expected return greater than U∗

j against the
policy specified by πi(ai) = xai . This implies that no probability distribution over
agent j’s actions will achieve a higher expected return than U∗

j . Finally, the
constraints in Equations 4.14 and 4.15 ensure that the values of xai form a valid

6. Assume agent 1’s policy assigns probability 1
3 to each action R, P, S. The expected

reward to agent 2 for any policy π2 is: π2(R)(1
3R2(R, R) + 1

3R2(P, R) + 1
3R2(S, R)) +

π2(P)(1
3R2(R, P) + 1

3R2(P, P) + 1
3R2(S, P)) +π2(S)(1

3R2(R, S) + 1
3R2(P, S) + 1

3R2(S, S)) =
π2(R)(− 1

3 + 1
3) +π2(P)(+ 1

3 − 1
3) +π2(S)(− 1

3 + 1
3) = 0. The same can be shown when switching the

roles of agents 1 and 2.

“marl-book-main” — 2025/6/18 — 20:07 — page 68 — #97

68 Chapter 4

probability distribution. Note that in a minimax solution, we will have U∗
i = U∗

j

(see Definition 5).
Linear programs can be solved using well-known algorithms, such as the

simplex algorithm, which runs in exponential time in the worst case but often
is very efficient in practice; or interior-point algorithms, which are provably
polynomial-time.

4.4 Nash Equilibrium

The Nash equilibrium solution concept applies the idea of a mutual best response
to general-sum games with two or more agents. That such a solution exists
in any general-sum non-repeated normal-form game was first proven in the
celebrated work of Nash (1950).

Definition 6 (Nash equilibrium) In a general-sum game with n agents, a joint
policy π = (π1, ...,πn) is a Nash equilibrium if

∀i,π′
i : Ui(π′

i ,π−i)≤Ui(π). (4.16)

In a Nash equilibrium, no agent i can improve its expected return by changing
its policy πi specified in the equilibrium joint policy π, assuming the policies
of the other agents stay fixed. This means that each agent’s policy in the
Nash equilibrium is a best response to the policies of the other agents, that is,
πi ∈BRi(π−i) for all i∈ I. Thus, Nash equilibrium generalizes minimax in that,
in two-agent zero-sum games, the set of minimax solutions coincides with the
set of Nash equilibria (Owen 2013). Nash (1950) first proved that every finite
normal-form game has at least one Nash equilibrium.

Recall the matrix games shown in Figure 3.2 (page 46). In the non-repeated
Prisoner’s Dilemma matrix game, the only Nash equilibrium is for both agents
to choose D. It can be seen that no agent can unilaterally deviate from this
choice to increase its expected return. In the non-repeated coordination game,
there exist three different Nash equilibria: (1) both agents choose action A, (2)
both agents choose action B, and (3) both agents assign probability 0.5 to each
action. Again it can be checked that no agent can increase its expected return
by deviating from its policy in each equilibrium. Lastly, in the non-repeated
Rock-Paper-Scissors game, the only Nash equilibrium is for both agents to
choose actions uniform-randomly, which is the minimax solution of the game.

The previous examples illustrate two important aspects of Nash equilibrium
as a solution concept. First, a Nash equilibrium can be deterministic in that each
policy πi in the equilibrium π is deterministic (i.e., πi(ai) = 1 for some ai ∈Ai),
such as in Prisoner’s Dilemma. However, in general, a Nash equilibrium may

“marl-book-main” — 2025/6/18 — 20:07 — page 69 — #98

Solution Concepts for Games 69

be probabilistic in that the policies in the equilibrium use randomization (i.e.,
πi(ai) < 1 for some ai ∈Ai), such as in the coordination game and Rock-Paper-
Scissors. In fact, some games only have probabilistic Nash equilibria but no
deterministic Nash equilibria, such as the Rock-Paper-Scissors game. As we
will see in Chapter 6, this distinction is important in MARL because some
algorithms are unable to represent probabilistic policies, and hence cannot
learn probabilistic equilibria. In the game theory literature, deterministic and
probabilistic equilibria are also called “pure equilibria” and “mixed equilibria,”
respectively; see also Section 3.7 for terminology.

Second, a game may have multiple Nash equilibria, and each equilibrium
may entail different expected returns for the agents. In the coordination game,
the two deterministic equilibria give an expected return of 10 to each agent,
while the probabilistic equilibrium gives an expected return of 5 to each agent.
The Chicken game (Section 4.6) and Stag Hunt game (Section 5.4.2) are other
examples of games with multiple Nash equilibria that each give different ex-
pected returns to the agents. This leads to the important question of which
equilibrium the agents should converge to during learning and how this may be
achieved. We will discuss this equilibrium selection problem in more depth in
Section 5.4.2.

The existence of Nash equilibria has also been shown for stochastic games
(Fink 1964; Filar and Vrieze 2012). In fact, for games with (infinite) sequential
moves, there are various “folk theorems”7 which essentially state that any set of
feasible and enforceable expected returns Û = (Û1, ..., Ûn) can be achieved by an
equilibrium solution if agents are sufficiently far-sighted (i.e., the discount factor
γ is close to 1). The assumptions and details in different folk theorems vary and
can be quite involved, and here we only provide a rudimentary description for
intuition (for more specific definitions, see, e.g., Fudenberg and Levine 1998;
Shoham and Leyton-Brown 2008). Broadly speaking, Û is feasible if it can be
realized within the game by some joint policy π; that is, there exists a π such
that Ui(π) = Ûi for all i∈ I. And Û is enforceable if each Ûi is at least as large
as agent i’s minmax value8

vi = min
πmm
−i

max
πmm

i

Ui(πmm
i ,πmm

−i). (4.17)

(Think: other agents −i minimize the maximum achievable return for agent i.)
Under these two conditions, we can construct an equilibrium solution that uses

7. The name “folk theorem” apparently came about because the general concept was known before
it was formalized.
8. We first encountered minmax in Section 4.3 where it was defined for two agents, while in
Equation 4.17 we define it for n agents (the mm superscript stands for minmax).

“marl-book-main” — 2025/6/18 — 20:07 — page 70 — #99

70 Chapter 4

π to achieve Û, and if at any time t any agent i deviates from its policy πi in π,
the other agents will limit i’s return to vi by using their corresponding minmax
policy πmm

−i from Equation 4.17 indefinitely after t. Thus, since vi≤ Ûi, i has no
incentive to deviate from πi, making π an equilibrium.

Given a joint policy π, how can one check whether it is a Nash equilibrium?
Equation 4.16 suggests the following procedure, which reduces the multi-agent
problem to n single-agent problems. For each agent i, keep the other policies
π−i fixed and compute an optimal best-response policy π′

i for i. If the optimal
policy π′

i achieves a higher expected return than agent i’s policy πi in the
joint policy π, that is, Ui(π′

i ,π−i) > Ui(πi,π−i), then we know that π is not a
Nash equilibrium. For non-repeated normal-form games, π′

i can be computed
efficiently using a linear program (e.g., Albrecht and Ramamoorthy 2012). For
games with sequential moves, π′

i may be computed using a suitable single-agent
RL algorithm.

4.5 ϵ-Nash Equilibrium

The strict requirement of Nash equilibrium — that no agent can gain anything
by unilaterally deviating from the equilibrium — can lead to practical issues
when used in a computational system. It is known that for games with more than
two agents, the action probabilities specified by the policies in the equilibrium
may be irrational numbers (i.e., cannot be represented as a fraction of two
integers). Nash himself pointed this out in his original work (Nash 1950).
However, computer systems cannot fully represent irrational numbers using
finite-precision floating-point approximations. Moreover, in many applications,
reaching a strict equilibrium may be too computationally costly. Instead, it
may be good enough to compute a solution that is sufficiently close to a strict
equilibrium, meaning that agents could technically deviate to improve their
returns but any such gains are sufficiently small.

The ϵ-Nash equilibrium relaxes the strict Nash equilibrium by requiring that
no agent can improve its expected returns by more than some amount ϵ> 0
when deviating from its policy in the equilibrium. Formally:

Definition 7 (ϵ-Nash equilibrium) In a general-sum game with n agents, a
joint policy π = (π1, ...,πn) is an ϵ-Nash equilibrium for ϵ> 0 if

∀i,π′
i : Ui(π′

i ,π−i)− ϵ≤Ui(π). (4.18)

Since the action probabilities specified by π′
i are continuous and we consider

expected returns Ui, we know that every Nash equilibrium is surrounded by a re-
gion of ϵ-Nash equilibria for any ϵ > 0. The exact Nash equilibrium corresponds

“marl-book-main” — 2025/6/18 — 20:07 — page 71 — #100

Solution Concepts for Games 71

C D
A 100,100 0,0
B 1,2 1,1

Figure 4.2: Matrix game to illustrate that an ϵ-Nash equilibrium (B,D) (ϵ= 1)
may not be close to a real Nash equilibrium (A,C).

to ϵ= 0. However, although it may be tempting to view ϵ-Nash equilibrium as
an approximation of Nash equilibrium, it is important to note that an ϵ-Nash
equilibrium may not be close to any real Nash equilibrium, in terms of the
expected returns produced by the equilibrium. In fact, the expected returns
under an ϵ-Nash equilibrium may be arbitrarily far away from those of any Nash
equilibrium, even if the Nash equilibrium is unique.

Consider the example game shown in Figure 4.2. This game has a unique
Nash equilibrium at (A,C).9 It also has an ϵ-Nash equilibrium at (B,D) for ϵ = 1,
in which agent 2 could deviate to action C to increase its reward by ϵ. First, note
that neither agent’s return under the ϵ-Nash equilibrium is within ϵ of its return
under the Nash equilibrium. Second, we can arbitrarily increase the rewards
for (A,C) in the game without affecting the ϵ-Nash equilibrium (B,D). Thus, in
this example, the ϵ-Nash equilibrium does not meaningfully approximate the
unique Nash equilibrium of the game.

To check that a joint policy π constitutes an ϵ-Nash equilibrium for some
given ϵ, we can use essentially the same procedure for checking Nash
equilibrium described at the end of Section 4.4, except that we check for
Ui(π′

i ,π−i)− ϵ> Ui(πi,π−i) to determine that π is not an ϵ-Nash equilibrium.

4.6 (Coarse) Correlated Equilibrium

A restriction of Nash equilibrium is that the agent policies must be probabilisti-
cally independent (as per Equation 4.5), which can limit the expected returns
that can be achieved by the agents. Correlated equilibrium (Aumann 1974) gen-
eralizes Nash equilibrium by allowing for correlation between policies. In the
general definition of correlated equilibrium, each agent i’s policy is additionally
conditioned on the outcomes of a private random variable di for the agent, which
are governed by a joint probability distribution over (d1, ..., dn) that is commonly
known by all agents. Here, we will present a common version of correlated

9. Saying that a joint action a is an X-equilibrium (e.g., Nash) is a shorthand for saying that a
deterministic joint policy π that assigns probability 1 to this joint action is an X-equilibrium.

“marl-book-main” — 2025/6/18 — 20:07 — page 72 — #101

72 Chapter 4

equilibrium for non-repeated normal-form games, in which di corresponds to
an action recommendation for agent i given by a joint policy πc. At the end of
this section, we will mention possible extensions to sequential-move games.

Definition 8 (Correlated equilibrium) In a general-sum normal-form game
with n agents, let πc(a) be a joint policy that assigns probabilities to joint
actions a∈A. Then, πc is a correlated equilibrium if for every agent i∈ I and
every action modifier ξi : Ai→Ai:∑

a∈A

πc(a)Ri(⟨ξi(ai), a−i⟩) ≤
∑
a∈A

πc(a)Ri(a) (4.19)

Equation 4.19 states that in a correlated equilibrium, in which every agent
knows the probability distribution πc(a) and its own recommended action ai

(but not the recommended actions for other agents), no agent can unilaterally
deviate from its recommended actions in order to increase its expected return.
Here, deviating from the recommended actions is represented by the action
modifier ξi. An example of a correlated joint policy can be seen in the central
learning approach discussed in Section 5.3.1, which trains a single policy πc

directly over the joint-action space A1× ...×An and uses this policy to dictate
actions to each agent.

It can be shown that the set of correlated equilibria contains the set of Nash
equilibria (e.g., Osborne and Rubinstein 1994); namely, Nash equilibrium is a
special case of correlated equilibrium in which the joint policy πc is factored
into independent agent policies π1, ...,πn with πc(a) =

∏
i∈I πi(ai). In this case,

since the agents’ policies in a Nash equilibrium are independent, knowing one’s
own action ai does not give any information about the action probabilities for the
other agents j ̸= i. Similarly to ϵ-Nash equilibrium defined in Equation 4.18, we
may add −ϵ in the left part of Equation 4.19 to obtain ϵ-correlated equilibrium,
in which no agent can unilaterally deviate from its recommended actions to
increase its expected return by more than ϵ.

To see an example of how correlated equilibrium can achieve greater returns
than Nash equilibrium, consider the Chicken matrix game shown in Figure 4.3.
This game represents a situation in which two vehicles (agents) are on a collision
course and can choose to either stay on course (S) or leave (L). In the non-
repeated game, there are the following three Nash equilibria with associated
expected returns for the two agents shown as pairs (Ui, Uj):

• πi(S) = 1, πj(S) = 0 → (7, 2)
• πi(S) = 0, πj(S) = 1 → (2, 7)
• πi(S) = 1

3 , πj(S) = 1
3 → ≈ (4.66, 4.66)

“marl-book-main” — 2025/6/18 — 20:07 — page 73 — #102

Solution Concepts for Games 73

S L
S 0,0 7,2
L 2,7 6,6

Figure 4.3: Chicken matrix game.

Now, consider the following joint policy πc that uses correlated actions:

• πc(L, L) =πc(S, L) =πc(L, S) = 1
3

• πc(S, S) = 0

The expected return under πc to both agents is: 7 · 1
3 + 2 · 1

3 + 6 · 1
3 = 5. It can

be verified that no agent has an incentive to unilaterally deviate from the action
recommended to it by πc, assuming knowledge of πc (and without knowing
the actions recommended to other agents). For example, say agent i received
action recommendation L. Then, given πc, i knows that agent j will choose S
with probability 0.5 and L with probability 0.5. Thus, the expected return for i
when choosing L is 2 · 1

2 + 6 · 1
2 = 4, which is higher than the expected return for

choosing S (0 · 1
2 + 7 · 1

2 = 3.5). Thus, i has no incentive to deviate from L.
The previous example also illustrates how a correlated equilibrium can

again be described as mutual best responses between the agents. In correlated
equilibrium, each action recommendation ai given by πc is a best response
(i.e., achieves maximum expected return for i) to the conditional distribu-
tion π−i(a−i | ai) = πc(⟨ai,a−i⟩)∑

a′i ∈Ai
πc(⟨a′i ,a−i⟩) over actions a−i recommended to the other

agents by πc given ai.
We can obtain an even more general class of equilibrium solutions, called

coarse correlated equilibrium (Moulin and Vial 1978),10 by requiring that the
inequality in Equation 4.19 only needs to hold for unconditional action modi-
fiers, which satisfy ∀a′i ∈Ai : ξi(a′i) = ai for some action ai. In other words, each
unconditional action modifier is just a constant action, with one ξi correspond-
ing to each action ai ∈Ai. This solution concept means that each agent has to
decide upfront, before seeing its recommended action, whether to follow the
joint policy πc assuming that the other agents follow it. If no agent can select a
constant action (i.e., unconditional action modifier) to obtain a higher expected
return compared to its expected return under πc, as per Equation 4.19, then πc is
a coarse correlated equilibrium. Coarse correlated equilibria include correlated
equilibria as a special case in which Equation 4.19 must hold for all possible
action modifiers, not just unconditional action modifiers.

10. Moulin and Vial (1978) proposed this solution concept but did not name it in their work.

“marl-book-main” — 2025/6/18 — 20:07 — page 74 — #103

74 Chapter 4

For sequential-move games, various definitions of correlated equilibrium
exist (e.g., Forges 1986; Solan and Vieille 2002; von Stengel and Forges 2008;
Farina, Bianchi, and Sandholm 2020). These definitions vary in a number
of design choices and can be relatively complex. For instance, the private
signals di may specify actions ai that are revealed at each decision point, or
they may specify entire policies πi revealed once at the start of the game.
The joint distribution over d1, ..., dn and the action/policy modifier ξi may be
conditioned on different types of information, such as the current game state,
agent observation histories, or previous values of di (Solan and Vieille 2002).
The sampled outcomes of di may or may not be revealed to agents, such as
in coarse correlated equilibria, which assume that the outcomes of di are only
revealed to agents if they “commit” to the equilibrium (e.g., Farina, Bianchi,
and Sandholm 2020). Definitions of correlated equilibrium can also vary in
how agents are treated if they deviate from the equilibrium; for example, no
further action recommendations may be issued to an agent after it deviates from
the action recommended by the equilibrium (von Stengel and Forges 2008).

4.6.1 Correlated Equilibrium via Linear Programming

For non-repeated normal-form games, we can compute a correlated equilibrium
by solving a linear program. The linear program computes a joint policy π such
that no agent can improve its expected return by deviating from the joint actions
sampled from π. Thus, the linear program contains variables xa for each joint
action a∈A, to represent the probability of selecting a under the joint policy π
(i.e., π(a) = xa). To select between different possible equilibria, we here use an
objective that maximizes the sum of the agents’ expected returns (i.e., social
welfare, see Section 4.9), but other objectives could be used such as maximizing
expected returns for individual agents. This gives rise to the following linear
program:

maximize
∑
a∈A

∑
i∈I

xaRi(a) (4.20)

subject to
∑

a∈A:ai=a′i

xaRi(a) ≥
∑

a∈A:ai=a′i

xaRi(a′′i , a−i) ∀i∈ I, a′
i , a′′i ∈Ai (4.21)

xa≥ 0 ∀a∈A (4.22)∑
a∈A

xa = 1 (4.23)

The constraints in Equation 4.21 ensure the property that no agent can gain
by deviating from the action a′

i sampled under the joint policy π(a) = xa to a
different action a′′

i . The constraints in Equations 4.22 and 4.23 ensure that the

“marl-book-main” — 2025/6/18 — 20:07 — page 75 — #104

Solution Concepts for Games 75

values of xa form a valid probability distribution. A similar linear program
can be solved to compute a coarse correlated equilibrium, by replacing the
constraints from Equation 4.21 with the following constraints:∑

a∈A

xaRi(a) ≥
∑
a∈A

xaRi(a′′i , a−i) ∀i∈ I, a′′
i ∈Ai (4.24)

Note that these linear programs can contain many more variables and con-
straints than the linear programs for minimax solutions (Section 4.3.1). We now
have variables corresponding to each joint action a∈A, which can grow expo-
nentially in the number of agents (see also the discussion in Section 5.4.4). For n
agents with k actions each, Equation 4.22 specifies kn constraints, Equation 4.21
specifies nk2 constraints, and Equation 4.24 specifies nk constraints.

4.7 Conceptual Limitations of Equilibrium Solutions

While equilibrium solutions, in particular the Nash equilibrium, have been
adopted as the standard solution concept in MARL, they are not without certain
shortcomings. Besides the practical issues noted in Section 4.5, we list some of
the most important conceptual limitations in equilibrium solutions:

Sub-optimality In general, finding equilibrium solutions is not synonymous
with maximizing expected returns. The only thing we know about a given
equilibrium solution is that each agent’s policy is a best response to the
policies of the other agents, but this does not mean that the agent’s expected
returns are the best they could be. A simple example of this can be seen
in the Prisoner’s Dilemma game (Figure 3.2(c)), in which the only Nash
equilibrium is the joint action (D,D) giving each agent an expected return
of −3, while the joint action (C,C) gives a higher expected return of −1
to each agent but is not a Nash equilibrium (each agent can deviate to
improve its return). Similarly, in the Chicken game (Section 4.6), the
shown correlated equilibrium πc achieves an expected return of 5 for each
agent, while the joint action (L,L) achieves expected returns of 6 for each
agent but is neither a Nash equilibrium nor a correlated equilibrium.

Non-uniqueness Equilibrium solutions may not be unique, which means that
there may exist multiple, even infinitely many, equilibria. Each of these
equilibria may entail different expected returns for different agents, as can
be seen in the three Nash equilibria in the Chicken game. This leads to a
difficult challenge: Which of these different equilibria should the agents
adopt, and how can they agree on a specific equilibrium? This challenge is
known as the “equilibrium selection” problem and has been widely studied

“marl-book-main” — 2025/6/18 — 20:07 — page 76 — #105

76 Chapter 4

in game theory and economics. In MARL, equilibrium selection can pose a
serious challenge for agents that learn concurrently from local observations,
which we will discuss further in Section 5.4.2. One approach to tackle
equilibrium selection is to use additional criteria such as Pareto optimality
(Section 4.8) and social welfare and fairness (Section 4.9) to differentiate
between different equilibria.

Incompleteness For games with sequential moves, an equilibrium solution
π is incomplete in that it does not specify equilibrium behaviors for off-
equilibrium paths. An off-equilibrium path is any full history ĥ which
has probability Pr(ĥ |π) = 0 (Equation 4.3) under the equilibrium π. For
example, this could occur due to some temporary disturbance in the agents’
executed policies leading to actions not normally prescribed by the policies.
In such cases, π does not prescribe actions to bring the interaction back to
an on-equilibrium path, meaning a full history ĥ with Pr(ĥ |π) > 0 under
the equilibrium π. To address such incompleteness, game-theorists have
developed refinement concepts such as subgame perfect equilibrium and
trembling-hand perfect equilibrium (Selten 1988; Owen 2013).

4.8 Pareto Optimality

As we saw in the previous sections, an equilibrium solution in which agents
use mutual best-response policies may be of limited value, because different
equilibria may entail very different expected returns for different agents (e.g.,
Chicken game; see Section 4.7). Moreover, under certain conditions, any
feasible and enforceable expected returns can be realized by an equilibrium
solution, making the space of equilibrium solutions very large or infinite (folk
theorems; see Section 4.4). Therefore, we may want to narrow down the space
of equilibrium solutions by requiring additional criteria that a solution must
achieve. One such criterion is Pareto optimality,11 defined next:

Definition 9 (Pareto domination and optimality) A joint policy π is Pareto-
dominated by another joint policy π′ if

∀i : Ui(π′)≥Ui(π) and ∃i : Ui(π′) > Ui(π). (4.25)

A joint policy π is Pareto-optimal12 if it is not Pareto-dominated by any other
joint policy. We then also refer to the expected returns of π as Pareto-optimal.

11. Named after Italian economist Vilfredo Pareto (1848–1923).
12. Some of the game theory literature uses the terms “Pareto-efficient/inefficient” for Pareto-
optimal/dominated, respectively.

“marl-book-main” — 2025/6/18 — 20:07 — page 77 — #106

Solution Concepts for Games 77

0 1 2 3 4 5 6 7 8 9
Agent 2 expected reward

0

1

2

3

4

5

6

7

8

9

Ag
en

t 1
 e

xp
ec

te
d

re
wa

rd

Joint return
Pareto-optimal
Deterministic NE
Probabilistic NE

Figure 4.4: Feasible expected joint rewards and Pareto frontier in the Chicken
matrix game. Each blue dot shows the expected joint reward obtained by a joint
policy. Red squares show joint rewards of Pareto-optimal joint policies. Also
shown are the joint rewards corresponding to the deterministic and probabilistic
Nash equilibria of the non-repeated game.

Intuitively, a joint policy is Pareto-optimal if there is no other joint policy
that improves the expected return for at least one agent, without reducing the
expected return for any other agent. In other words, no agent can be better off
without making other agents worse off. Every game must have at least one joint
policy that is Pareto-optimal. In common-reward games, all Pareto-optimal joint
policies achieve the same expected return, which by definition is the maximum
possible expected return that any joint policy can achieve in the game.

We illustrate Pareto optimality using the non-repeated Chicken matrix game
from Figure 4.3 (page 73). Figure 4.4 shows the convex hull of feasible expected
joint returns in this game. Each dot corresponds to the expected joint return
achieved by some joint policy (π1,π2). In this figure, we discretized the space
of joint policies by stepping each policy from πi(S) = 0 to πi(S) = 1 using a
step size of 1

30 , resulting in 30 different policies for each agent, and a total
of 30 · 30 = 900 joint policies. The corners of the convex hull correspond to
the four possible deterministic joint policies (i.e., the four joint actions from
the game matrix). The expected joint returns obtained by Pareto-optimal joint
policies are marked by the red squares. The figure also shows the expected joint
returns corresponding to the deterministic and probabilistic Nash equilibria of
the game (see Section 4.6 for details).

“marl-book-main” — 2025/6/18 — 20:07 — page 78 — #107

78 Chapter 4

For infinitely repeated games and under the average reward,13 there exists
a folk theorem that shows that any expected joint return in this hull that is
equal to or larger than the minmax value of the agents (Equation 4.17) can be
realized by an equilibrium. In the Chicken game, it can be seen from the game’s
reward matrix that the minmax value for both agents is 2, and so any expected
joint return (U1, U2) with U1, U2≥ 2 in the hull can be realized by means of an
equilibrium. This is where Pareto optimality comes in: we can narrow down the
space of desirable equilibria by requiring that the expected joint return achieved
by an equilibrium also be Pareto-optimal. The Pareto-optimal joint returns are
those that reside on the Pareto frontier shown by the red squares. Thus, for any
given joint policy π, we can project its corresponding expected joint return into
the convex hull and detect Pareto optimality if the joint return lies on the Pareto
frontier.

We have presented Pareto optimality as a concept to refine equilibrium so-
lutions. However, note that a joint policy can be Pareto-optimal without being
an equilibrium solution. Yet, Pareto optimality on its own may not be a very
useful solution concept. In particular, all joint policies in zero-sum games are
Pareto-optimal by definition. In general-sum games, many joint policies may
be Pareto-optimal without being a desirable solution, such as joint policies that
are Pareto-optimal but result in large differences between the agents’ expected
returns. We will discuss this latter case further in Section 4.9.

4.9 Social Welfare and Fairness

Pareto optimality states that there is no other solution in which at least one agent
is better off without making other agents worse off. However, it does not make
any statements about the total amount of rewards and their distribution among
the agents. For example, the Pareto frontier in Figure 4.4 contains solutions
with expected joint returns ranging from (7, 2) to (6, 6) to (2, 7). Thus, we may
consider concepts of social welfare and fairness to further constrain the space
of desirable solutions.

The study of social welfare and fairness has a long history in economics, and
many criteria and social welfare functions have been proposed (Moulin 2004;
Fleurbaey and Maniquet 2011; Sen 2018; Amanatidis et al. 2023). The term
welfare usually refers to some notion of totality of the agents’ returns, while the
term fairness relates to the distribution of returns among agents. In this section,
we consider two basic definitions of welfare and fairness:

13. Average returns (or average rewards) correspond to discounted returns with γ→ 1.

“marl-book-main” — 2025/6/18 — 20:07 — page 79 — #108

Solution Concepts for Games 79

Definition 10 (Welfare and Welfare Optimality) The (social) welfare of a
joint policy π is defined as

W(π) =
∑
i∈I

Ui(π). (4.26)

A joint policy π is welfare-optimal if π ∈ arg maxπ′ W(π′).

Definition 11 (Fairness and Fairness Optimality) The (social) fairness of a
joint policy π is defined as14

F(π) =
∏
i∈I

Ui(π). (4.27)

A joint policy π is fairness-optimal if π ∈ arg maxπ′ F(π′).

A welfare-optimal joint policy maximizes the sum of the agents’ expected
returns, while a fairness-optimal joint policy maximizes the product of the
agents’ expected returns. This definition of fairness promotes a type of equity
between the agents, in the following sense: if we consider a set of joint policies
π ∈Π that achieve equal welfare (sum of returns) W(π), then the joint policy
π ∈Π with the greatest fairness according to F(π) is that which gives equal
expected return for each agent, that is, Ui(π) = Uj(π) for all i, j. For example,
three different joint policies in a two-agent game that yield expected joint returns
of (1, 5), (2, 4), (3, 3) achieve equal welfare of 6 and a respective fairness of
5, 8, and 9.15 When applying these definitions of welfare and fairness to the
example game in Figure 4.4, it can be seen that the only solution that is both
welfare-optimal and fairness-optimal is the joint policy that achieves expected
joint return of (6, 6). Thus, in this example, we have narrowed the space of
desirable solutions to a single solution. Another example of fairness-optimality,
in the Battle of the Sexes matrix game, is shown in Figure 4.5.

Social welfare and fairness, such as defined here, can be useful in general-
sum games but are not so useful in common-reward games and zero-sum games.
In common-reward games, in which all agents receive identical reward, welfare
and fairness are maximized if and only if the expected return of each agent is
maximized; hence, welfare and fairness do not add any useful criteria in this
class of games. In two-agent zero-sum games, in which one agent’s reward is
the negative of the other agent’s reward, we know that all minimax solutions

14. This type of fairness is also known as Nash social welfare, defined as the geometric mean(∏
i∈I Ui(π)

) 1
n (Caragiannis et al. 2019; Fan et al. 2023).

15. The careful reader may have noticed some limitations of the simple definition of fairness in
Definition 11. For example, if Ui(π) = 0 for any agent, then it does not matter what returns the other
agents obtain under π. And if we allow Ui(π) < 0, then the expected joint return (−0.1, 1, 1) would
be less fair than the expected joint return (−0.1,−100, 100), which is counter-intuitive.

“marl-book-main” — 2025/6/18 — 20:07 — page 80 — #109

80 Chapter 4

A B
A 10,7 2,2
B 0,0 7,10

(a) Battle of the Sexes matrix game.

0 1 2 3 4 5 6 7 8 9 10
Agent 2 expected reward

0

1

2

3

4

5

6

7

8

9

10

Ag
en

t 1
 e

xp
ec

te
d

re
wa

rd

Joint return
Pareto-optimal
Deterministic NE
Probabilistic NE
Fairness-optimal

(b) Joint rewards and fairness-optimal outcomes.

Figure 4.5: Feasible joint rewards and fairness-optimal outcomes in the Battle
of the Sexes matrix game. This game models a situation where two people
(classically, a man and a woman, hence the name of the game) want to meet
in one of two places (A or B) but have different preferences about the best
place. Agent 1 prefers place A and agent 2 prefers place B. Joint action (A,B) is
preferred over (B,A), since in the latter case both agents end up at their respective
least-preferred place. The two deterministic joint policies corresponding to
joint actions (A,A) and (B,B) are the only joint policies (in the non-repeated
game) that are both Pareto-optimal and fairness-optimal. The figure also shows
the only probabilistic Nash equilibrium, which is neither Pareto-optimal nor
fairness-optimal.

π have the same unique value Ui(π) =−Uj(π) for agents i, j. Therefore, all
minimax solutions achieve equal welfare and fairness, respectively (besides, the
welfare as defined here will always be zero).

It is easy to prove that welfare optimality implies Pareto optimality. To see
this, suppose a joint policy π is welfare-optimal but not Pareto-optimal. Since π
is not Pareto-optimal, there exists a joint policy π′ such that ∀i : Ui(π′)≥Ui(π)
and ∃i : Ui(π′) > Ui(π). However, it follows that

∑
i Ui(π′) >

∑
i Ui(π) and,

therefore, π cannot be welfare-optimal (contradiction). Thus, π must also be
Pareto-optimal if it is welfare-optimal. Note that Pareto optimality does not
in general imply welfare optimality, hence welfare optimality is a stronger
requirement. Moreover, fairness optimality does not imply Pareto optimality,
and vice versa.

“marl-book-main” — 2025/6/18 — 20:07 — page 81 — #110

Solution Concepts for Games 81

4.10 No-Regret

The equilibrium solution concepts discussed in the previous sections are based
on mutual best responses between agents, and are thus a function of the agents’
policies. Another category of solution concepts is based on the notion of regret,
which measures the difference between the rewards an agent received and the
rewards it could have received if it had chosen a different action (or policy) in
past episodes against the observed actions (or policies) of the other agents in
these episodes. An agent is said to have no-regret if, in the limit of infinitely
many episodes, the agent’s average regret across the episodes is at most zero.
Therefore, no-regret considers the performance of learning agents across mul-
tiple episodes, which is in contrast to the other solution concepts introduced
in this chapter that only consider a single joint policy (and not how this joint
policy was learned). In this sense, no-regret can be viewed as an example of
the prescriptive agenda discussed in Section 1.5, which is concerned with the
performance of agents during learning.

There are multiple ways in which regret can be defined. We will first give
a standard definition of regret for non-repeated normal-form games, which
is based on comparing the rewards of different actions in the episodes. This
definition will then be extended to sequential-move games. Let ae denote the
joint action from episodes e = 1, ..., z. Agent i’s regret for not having chosen the
best single action across these episodes is defined as

Regretz
i = max

ai∈Ai

z∑
e=1

[
Ri(⟨ai, ae

−i⟩)−Ri(ae)
]

. (4.28)

An agent is said to have no-regret if its average regret in the limit of z→∞
is at most zero. As a solution concept, no-regret requires that all agents in the
game have no-regret.

Definition 12 (No-regret) In a general-sum game with n agents, the agents
have no-regret if

∀i : lim
z→∞

1
z

Regretz
i ≤ 0. (4.29)

Similar to ϵ-Nash equilibrium (Section 4.5), we may replace the ≤ 0 in
Equation 4.29 with ≤ ϵ, for ϵ> 0, to obtain an ϵ-no-regret.

As a concrete example, Figure 4.6 shows ten episodes of two agents in the
non-repeated Prisoner’s Dilemma matrix game. After the episodes, agent 1 has
received a total reward of −21. Always choosing C in the episodes (against
the observed actions of agent 2) would have resulted in a total reward of −30,
while always choosing D would have resulted in a total reward of −15. Thus,

“marl-book-main” — 2025/6/18 — 20:07 — page 82 — #111

82 Chapter 4

Episode e 1 2 3 4 5 6 7 8 9 10

Action ae
1 C C D C D D C D D D

Action ae
2 C D C D D D C C D C

RewardR1(ae) -1 -5 0 -5 -3 -3 -1 0 -3 0

RewardR1(⟨C, ae
2⟩) -1 -5 -1 -5 -5 -5 -1 -1 -5 -1

RewardR1(⟨D, ae
2⟩) 0 -3 0 -3 -3 -3 0 0 -3 0

Figure 4.6: Ten episodes between two agents in the non-repeated Prisoner’s
Dilemma matrix game. The bottom two rows show agent 1’s rewards for always
choosing actions C/D against agent 2’s observed actions in the episodes.

action D was the “best” action against the observed actions of agent 2, and so
agent 1’s regret is Regret10

1 =−15 + 21 = 6 with an average regret (dividing by
10) of 0.6. Indeed, in Prisoner’s Dilemma, D is a dominant action in that it is
a best response against both D and C (see the reward matrix in Figure 3.2(c)
(page 46) to verify this). In order for agent 1 to achieve no-regret, the episodes
would need to continue in such a way that agent 1’s average regret across the
episodes goes to zero.

We can generalize the definition of no-regret to stochastic games and POSGs,
by redefining the regret over policies rather than actions. For each agent i∈ I,
let Πi be a finite space of policies that agent i can select from. Let πe denote the
joint policy from episodes e = 1, ..., z, with πe

i ∈Πi for all i∈ I. Then, agent i’s
regret for not having chosen the best policy across these episodes is defined as

Regretz
i = max

πi∈Πi

z∑
e=1

[
Ui(⟨πi,πe

−i⟩)−Ui(πe)
]

. (4.30)

With this definition of regret, Definition 12 applies to all of the game models
introduced in Chapter 3. (For non-repeated normal-form games, Equation 4.30
is equivalent to Equation 4.28 if we define each Πi to be the set of deterministic
policies corresponding to each action ai ∈Ai.)

Our previous example in Prisoner’s Dilemma illustrates an important con-
ceptual limitation of regret, which is that it assumes that the actions or policies
of other agents −i remain fixed in the episodes. This assumption is sensible
if the other agents use constant policies that do not change between episodes.
However, if the other agents adapt their policies based on past episodes, then
this assumption is of course violated. Therefore, regret does not actually quan-
tify what would have happened under counterfactual situations. The second
limitation, which is a result of the first limitation, is that minimizing regret is

“marl-book-main” — 2025/6/18 — 20:07 — page 83 — #112

Solution Concepts for Games 83

not necessarily equivalent to maximizing returns (Crandall 2014). For example,
in non-repeated and finitely repeated Prisoner’s Dilemma, the only joint policy
that has no-regret is for both agents to always choose D. This is analogous to
the fact that mutual best-response policies do not necessarily entail maximum
returns for the agents, as we discussed in Section 4.7.

Various alternative definitions of regret exist (e.g., de Farias and Megiddo
2003; Lehrer 2003; Chang 2007; Zinkevich et al. 2007; Arora, Dekel, and
Tewari 2012; Crandall 2014). For example, for normal-form games in which
agents can choose from more than two actions, rather than replacing all of
agent i’s past actions as in Equation 4.28, we may replace only the specific
occurrences of a given action a′

i in the history with a different action ai. This
latter definition of regret is also known as conditional (or internal) regret, while
the definition in Equation 4.28 is known as unconditional (or external) regret.
Furthermore, no-regret solutions have connections to equilibrium solutions. In
particular, in two-agent zero-sum normal-form games, the empirical distribution
of joint actions produced by agents that have no external regret converges to the
set of minimax solutions; and in general-sum normal-form games, the empirical
distribution of joint actions converges to the set of coarse correlated equilibria
if the agents have no external regret, and to the set of correlated equilibria if
the agents have no internal regret (Hart and Mas-Colell 2000; Young 2004).
(See also Section 5.2 for a discussion of convergence types.) We will revisit
these two regret definitions and their connection to correlated equilibrium in
Section 6.5.

4.11 The Complexity of Computing Equilibria

Before we turn to MARL algorithms in Chapters 5 and 6 as a method to
compute solutions for games, it is instructive to ask: How difficult is it, in
terms of computational complexity, to compute an equilibrium solution for a
game? Do algorithms exist that can compute equilibria efficiently, meaning in
polynomial time in the size of the game?

These and related questions are studied in algorithmic game theory, which
is a research area at the interface of computer science and game theory. Many
complexity results exist for various special types of games, and we recommend
the books of Nisan et al. (2007) and Roughgarden (2016) for a broad discussion.
Here, we focus on non-repeated normal-form games, which are the building
block of the more complex (partially observable) stochastic game models. Thus,
we can expect any complexity results for normal-form games to be a lower
bound on the complexity for the more complex game models.

“marl-book-main” — 2025/6/18 — 20:07 — page 84 — #113

84 Chapter 4

Most computer scientists will have some familiarity with the complexity
classes P and NP. P includes all decision problems whose solutions (if they
exist) can be computed efficiently in polynomial time in the size of the problem
instance. NP includes all decision problems whose solutions (if they exist) can
be computed in polynomial time by a non-deterministic Turing machine. Un-
fortunately, these familiar complexity classes are not a good fit for the problem
of computing an equilibrium, since P/NP characterize decision problems which
may or may not have solutions, while we know that games always have at least
one equilibrium solution. On the other hand, computing an equilibrium that
satisfies additional properties is a decision problem, since such solutions may
or may not exist. Such problems include computing equilibria that:

• are Pareto optimal;
• achieve a certain minimum expected return for each agent;
• achieve a certain minimum social welfare (sum of returns);
• assign zero or positive probability to certain actions of certain agents.

All of these problems are known to be NP-hard (Gilboa and Zemel 1989;
Conitzer and Sandholm 2008).

Some types of games and equilibria do admit polynomial-time algorithms.
Computing a minimax solution in a two-agent zero-sum non-repeated normal-
form game can be formulated via linear programming (Section 4.3.1), which can
be solved in polynomial time. Similarly, computing a correlated equilibrium in
a general-sum non-repeated normal-form game can be done in polynomial time
via a linear program (Section 4.6.1). However, computing a Nash equilibrium
in general-sum non-repeated normal-form games — henceforth simply called
NASH — cannot be solved via linear programming, due to the independence
assumption between policies in a Nash equilibrium.

Problems that always have solutions, such as NASH, are known as total search
problems. Section 4.11.1 will present one subclass of total search problems,
called PPAD. It turns out that NASH is a complete problem in PPAD, meaning
that any other problem in PPAD can be reduced to NASH. We will discuss the
implications for MARL in Section 4.11.2.

4.11.1 PPAD Complexity Class

PPAD (short for “polynomial parity argument for directed graphs”) describes
a special class of total search problems. We define PPAD by giving one of its

“marl-book-main” — 2025/6/18 — 20:07 — page 85 — #114

Solution Concepts for Games 85

Figure 4.7: Any instance of END-OF-LINE consists of a set of paths and cycles,
such as the instance shown here. Given the Parent / Child functions and a source
node (a node with no parent node; here shaded in gray), is there an efficient
polynomial-time algorithm to find a sink node (a node with no child node) or a
different source node?

complete problems to which all other problems in PPAD can be reduced.16 This
PPAD-complete problem is called END-OF-LINE and is defined as follows:

Definition 13 (END-OF-LINE) Let G(k) = (V , E) be a directed graph consisting
of

• a finite set V containing 2k nodes (each node is represented as a bit-string of
length k)

• a finite set E = {(a, b) | a, b∈V} of directed edges (from node a to node b, for
a, b∈V) such that:

if (a, b)∈E then ̸ ∃a′ ̸= a : (a′, b)∈E and ̸ ∃b′ ̸= b : (a, b′)∈E

Assume functions Parent(v) and Child(v) that, respectively, return the parent
node (if any) and child node (if any) of node v∈V. These functions are repre-
sented as boolean circuits with k input bits and k output bits, and run in time
polynomial in k. Given access to functions Parent and Child (but not E), and a
node s∈V such that Parent(s) = ∅, find a node e ̸= s such that either Child(e) = ∅
or Parent(e) = ∅.17

Figure 4.7 shows an illustration of a END-OF-LINE problem instance. The
restriction on E in Definition 13 means that any node in the graph can have at
most one parent node and at most one child node. A node with no parent is

16. Problem A can be “reduced” to problem B if there exist polynomial-time algorithms to transform
any instance of A into an equivalent instance of B, and any solution of the instance of B to a solution
of the original instance of A.
17. To indicate that a node has no parent/child, the respective circuit function simply outputs the
same input node.

“marl-book-main” — 2025/6/18 — 20:07 — page 86 — #115

86 Chapter 4

also called a source node, while a node with no child is called a sink node. The
“parity argument” in PPAD refers to the fact that any source node in this graph
always has a corresponding sink node. Therefore, if a source node s is given,
then we know that a node e must exist. The node e can, in principle, be found by
following the directed path starting at the given source node s. However, since
we are only given the functions Parent and Child (and not E), the only obvious
way to follow this path is by repeatedly calling the function Child starting at
the source node s. Therefore, finding a sink node may require exponential time
in the worst case, since there are 2k nodes.

Why should we care about PPAD? Just as it is unknown whether efficient
polynomial-time algorithms exist to solve NP-complete problems (the big
“P = NP?” question), it is also unknown whether efficient algorithms exist for
PPAD-complete problems (“P = PPAD?”). Indeed, PPAD contains problems for
which researchers have tried for decades to find efficient algorithms, including
the classic Brouwer fixed-point problem and finding Arrow-Debreu equilibria
in markets (see Papadimitriou (1994) for a more complete list). PPAD has also
been shown to be hard under cryptographic assumptions (Bitansky, Paneth,
and Rosen 2015; Garg, Pandey, and Srinivasan 2016; Choudhuri et al. 2019).
There are currently no known algorithms that can efficiently solve END-OF-
LINE (i.e., in time polynomial in k) and, thus, any other problem in PPAD.
Therefore, establishing that a problem is PPAD-complete is a good indicator
that no efficient algorithms exist to solve the problem.

4.11.2 Computing ϵ-Nash Equilibrium Is PPAD-Complete

We return to our initial question, “Do algorithms exist that can compute equi-
libria efficiently, in polynomial time in the size of the game?” Unfortunately,
the answer is very likely negative. It has been proven that NASH is PPAD-
complete, at first for games with three or more agents (Daskalakis, Goldberg,
and Papadimitriou 2006, 2009), and shortly after even for games with two
agents (Chen and Deng 2006). This means that finding a Nash equilibrium in a
non-repeated normal-form game can be described as finding an e-node in an
equivalent END-OF-LINE instance. The completeness also means that any other
problem in PPAD, including Brouwer fixed-points, can be reduced to NASH.

More precisely, the PPAD-completeness of NASH was proven for approx-
imate ϵ-Nash equilibrium (Section 4.5) for certain bounds on ϵ> 0; and for

“marl-book-main” — 2025/6/18 — 20:07 — page 87 — #116

Solution Concepts for Games 87

exact equilibria (when ϵ= 0) in games with two agents.18 The use of ϵ-Nash
equilibrium is to account for the fact that a Nash equilibrium may involve
irrational-valued probabilities in games with more than two agents. Therefore,
the PPAD-completeness of NASH also includes approximation schemes for
computing Nash equilibria, such as MARL algorithms, which may only learn
approximate solutions given a finite number of interactions in the game.

The implication for us is that MARL is unlikely to be a magic bullet for solv-
ing games: since no efficient algorithms are known to exist for PPAD-complete
problems, it is unlikely that efficient MARL algorithms exist to compute Nash
equilibria in polynomial time. Much of the research in MARL has focused on
identifying and exploiting structures (or assumptions) in certain game types
that lead to improved performance. However, the PPAD-completeness of NASH

tells us that, in general and without such assumed structures, it is likely that any
MARL algorithm still requires exponential time in the worst case.

4.12 Summary

This chapter introduced a range of solution concepts for games, to define optimal
policies for agents in the game. The main concepts are the following:

• A solution for a game is a joint policy (typically including one policy for
each agent) that satisfies certain conditions which are expressed in terms of
the expected returns for agents and the relationship between the returns.

• Many solution concepts can be compactly represented based on the notion of
best responses. A best-response policy maximizes the expected returns of
one agent against a set of given policies for the other agents.

• There exists a series of increasingly general equilibrium solution concepts,
including minimax for two-agent zero-sum games, and Nash equilibrium and
(coarse) correlated equilibrium for general-sum games with two or more
agents. These equilibrium solutions are all based on the idea that every agent
is best-responding to all other agents under the equilibrium, and hence no
agent can unilaterally deviate from the equilibrium to increase its returns.

• Games may have a unique equilibrium solution, or they may have multiple
(even infinitely many) equilibria that can yield different expected returns for

18. As discussed in Section 4.5, an ϵ-Nash equilibrium may not be close to any actual Nash
equilibrium, even if the Nash equilibrium is unique. The problem of approximating an actual Nash
equilibrium within a desired distance, as measured in the policy space via norms such as L1 and L2,
is in fact much harder than computing an ϵ-Nash equilibrium. This latter problem, for general-sum
normal-form games with three or more agents, is complete for a different complexity class called
FIXP (Etessami and Yannakakis 2010).

“marl-book-main” — 2025/6/18 — 20:07 — page 88 — #117

88 Chapter 4

the agents. Thus, learning an equilibrium solutions is not necessarily the
same as maximizing the expected returns for all agents.

• Different refinement concepts exist that can be combined with equilibrium
solutions to narrow the space of desirable solutions, such as Pareto optimality
and concepts based on social welfare and fairness. For example, we may
seek a Nash equilibrium that is also Pareto-optimal.

• No-regret is an alternative solution concept that considers the alternative
returns an agent could have received if it had used different policies in past
episodes of the game against the observed policies of the other agents. A
joint policy achieves no-regret if the average regret for each agent goes to
zero in the limit of infinitely many episodes.

• Computing a Nash equilibrium in general-sum normal-form games is a
complete problem for the PPAD complexity class. There are currently no
known efficient (i.e., polynomial time) algorithms to solve PPAD-complete
problems. The implication is that there probably do not exist efficient MARL
algorithms that learn Nash equilibria for general games.

Now that we are equipped with different solution concepts for the game
models introduced in Chapter 3, the next two chapters in this part of the book
will describe different families of MARL algorithms that are designed to learn
such solutions under certain conditions. Chapter 5 will begin by outlining a
general learning process and different convergence types with which MARL
algorithms can learn or approximate solutions, as well as the key challenges
when trying to learn game solutions using MARL methods.

“marl-book-main” — 2025/6/18 — 20:07 — page 89 — #118

5 Multi-Agent Reinforcement Learning in Games:
First Steps and Challenges

The preceding chapters introduced game models as a formalism of multi-agent
interaction, and solution concepts to define what it means for the agents to
act optimally in a game. In this chapter, we will begin to explore methods
to compute solutions for games. The principal method by which we seek to
compute solutions is via reinforcement learning (RL), in which the agents
repeatedly try actions, make observations, and receive rewards. Analogous to
the standard RL terminology introduced in Chapter 2, we use the term episode
to refer to each independent run of a game starting in some initial state. The
agents learn their policies based on data (i.e., observations, actions, and rewards)
obtained from multiple episodes in a game.

To set the context for the algorithms presented in this book, this chapter
will begin by outlining a general learning framework for MARL, as well as
different types of convergence definitions used in the analysis and evaluation of
MARL algorithms. We will then introduce two basic approaches of applying
RL in games, called central learning and independent learning, both of which
reduce the multi-agent problem to a single-agent problem. Central learning
applies single-agent RL directly to the space of joint actions to learn a central
policy that chooses actions for each agent, while independent learning applies
single-agent RL to each agent independently to learn agent policies, essentially
ignoring the presence of other agents.

Central and independent learning serve as a useful starting point to discuss
several important challenges faced by MARL algorithms. One characteristic
challenge of MARL is environment non-stationarity due to multiple learning
agents, which can lead to unstable learning. Equilibrium selection is the problem
of what equilibrium solution the agents should agree on and how they may
achieve agreement. Another challenge is multi-agent credit assignment, in
which agents must infer whose actions contributed to a received reward. Finally,

“marl-book-main” — 2025/6/18 — 20:07 — page 90 — #119

90 Chapter 5

s2 s3

s1

Game model

Joint policy

Learning algorithm

Updated joint policy

Data

Histories

Figure 5.1: Elements of a general learning process in MARL.

MARL algorithms are typically faced with an exponential growth of the joint-
action space as the number of agents is increased, leading to scalability problems.
We will discuss each of these challenges and provide examples.

The idea that agents can use their own algorithms to learn policies, such as
in independent learning, leads to the possibility that agents may use the same
learning algorithm or different algorithms. This chapter will conclude with a
discussion of such self-play and mixed-play settings in MARL.

5.1 General Learning Process

We begin by defining learning1 in games and the intended learning outcome.
In machine learning, learning is a process that optimizes a model or function
based on data. In our setting, the model is a joint policy usually consisting of
policies for each agent, and the data (or “experiences”) consist of one or more
histories in the game. The learning goal is a solution of the game, defined by a
chosen solution concept. Thus, this learning process involves several elements,
shown in Figure 5.1 and detailed next.

Game model: The game model defines the multi-agent environment and
how agents may interact. Game models introduced in Chapter 3 include
non-repeated normal-form games, repeated normal-form games, stochastic
games, and partially observable stochastic games (POSG).

Data: The data used for learning consist of a set of z histories,

Dz = {hte | e = 1, ..., z}, z≥ 0. (5.1)

1. Another commonly used term is “training.” We use the terms learning and training interchangeably,
for example, as in “learning/training a policy.”

“marl-book-main” — 2025/6/18 — 20:07 — page 91 — #120

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 91

Each history hte was produced by a joint policy πe used during episode e.
These histories may or may not be “complete” in the sense of ending in
a terminal state of the game, and different histories may have different
lengths te. Often, Dz contains the history so far from the current ongoing
episode z and the histories from previous episodes e < z.

Learning algorithm: The learning algorithm L takes the collected data Dz

and current joint policy πz, and produces a new joint policy,

πz+1 =L(Dz,πz). (5.2)

The initial joint policy π0 is typically random.

Learning goal: The goal of learning is a joint policy π∗ which satisfies the
properties of a chosen solution concept. Chapter 4 introduced a range of
possible solution concepts, such as Nash equilibrium.

We note several nuances in the above elements:
The chosen game model determines the conditioning of the learned joint

policy. In a non-repeated normal-form game (where episodes terminate after
one time step), policies πi are not conditioned on histories, that is, they are
simple probability distributions over actions. In a repeated normal-form game,
policies are conditioned on action histories ht = (a0, ..., at−1). In a stochastic
game, policies are conditioned on state-action histories ht = (s0, a0, s1, a1, ..., st).
In a POSG, policies are conditioned on observation histories ht

i = (o0
i , ..., ot

i).
These conditionings are general and may be constrained depending on the
desired form of policies. For example, in a stochastic game we may condition
policies only on the current state of the game; and in a POSG we may condition
policies using only the most recent k observations.

The histories in Dz may in general be full histories (i.e., contain all states and
joint observations/actions; see Section 4.1) or one of the other types of histories
listed earlier. Therefore, the histories in Dz may contain more information than
the histories used to condition the agents’ policies. For example, this can be the
case in centralized training with decentralized execution regimes (discussed in
Section 9.1), in which a learning algorithm has access to the observations of all
agents during learning, while the agents’ policies only have access to the local
observations of agents.

The learning algorithm L may itself consist of multiple learning algorithms
that learn individual agent policies, such as one algorithm Li for each agent i.
Each of these algorithms may use different parts of the data in Dz, or use its
own data Dz

i such as in independent learning (Section 5.3.2). Furthermore, an
important characteristic of RL is that the learning algorithm is actively involved
in the generation of the data by exploring actions, rather than just passively

“marl-book-main” — 2025/6/18 — 20:07 — page 92 — #121

92 Chapter 5

consuming the data. Thus, the policies produced by the learning algorithm may
actively randomize over actions to generate useful data for learning.

5.2 Convergence Types

A number of different criteria can be used to evaluate the learning performance
of MARL algorithms. The main theoretical evaluation criterion for learning
that we use in this book is convergence of the joint policy πz to a solution π∗ of
the game (e.g., Nash equilibrium) in the limit of infinite data,

lim
z→∞

πz =π∗. (5.3)

As was discussed in Chapter 4, a game may have more than one solution π∗

and this depends on the specific solution concept. When we say “convergence
to a solution π∗” the emphasis is on “a,” meaning that π∗ is some valid solution
under the relevant solution concept.

When we make statements about the theoretical convergence of MARL algo-
rithms, unless specified otherwise, we mean convergence as per Equation 5.3.2

Of course, in practice we cannot collect infinite data, and learning typically
stops after a predefined budget is reached (such as a total allowed number of
episodes or time steps) or once the changes in policies are below some predeter-
mined threshold. Whether a learned joint policy πz is in fact a solution can be
tested using procedures such as described in Sections 4.4 and 4.5.

Several other theoretical evaluation criteria have been studied in the literature,
including both weaker and stronger types of convergence. Weaker types of
convergence include:

• Convergence of expected return:

lim
z→∞

Ui(πz) = Ui(π∗), ∀i∈ I (5.4)

This convergence type means that, in the limit of infinite data z→∞, the
expected joint return under the learned joint policy πz will converge to the
expected joint return of a solution π∗.

• Convergence of empirical distribution:

lim
z→∞

π̄z =π∗ (5.5)

2. To be fully precise, some convergence statements in the literature add the additional qualifier
that convergence will happen “with probability 1” or “almost surely.” This qualifier means that,
theoretically, there may be conditions (i.e., trajectories of (πz)) under which convergence might not
happen, but that the probability of these conditions occurring is 0 under the relevant probability
measure. We omit this technicality in favor of simplicity.

“marl-book-main” — 2025/6/18 — 20:07 — page 93 — #122

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 93

where π̄z(a | h) = 1
z

∑z
e=1 π

e(a | h) is the averaged joint policy across episodes.
We may equivalently define π̄z as the empirical distribution as follows: In an
episode e, let (aτ , hτ)t

τ=0 be the sequence of joint actions aτ sampled from
the joint policy πe conditioned on history hτ , that is, aτ ∼πe(· | hτ).3 (Note
that e denotes the episode number while τ denotes the time step within an
episode.) Let Hz be the set containing all of the (aτ , hτ)-pairs from episodes
e = 1, ..., z. Then, the empirical distribution is given by

π̄z(a | h) =
1

|Hz(h)|

∑
(aτ ,hτ)∈Hz(h)

[a = aτ]1 (5.6)

where Hz(h) = {(aτ , hτ)∈Hz | hτ = h}, and [x]1 = 1 if x is true, else [x]1 = 0.
(If Hz(h) is empty, then π̄z(a | h) = 1

|A| .) These two definitions are equivalent in
that the averaged joint policy is the expectation of the empirical distribution.
Thus, they get arbitrarily close for increasing z, and they are identical for
z→∞. This means that the convergence in Equation 5.5 holds if and only if
it holds for both the averaged joint policy and the empirical distribution.

• Convergence of empirical distribution to set of solutions:

∀ϵ> 0 ∃z0 ∀z > z0 ∃π∗ : d(π̄z,π∗) < ϵ (5.7)

In words, for any arbitrarily small (but fixed) ϵ> 0, there is a point z0 in
the learning process depending on ϵ such that, for all z > z0, there exists a
solution π∗ at a distance less than ϵ to the empirical distribution π̄z. The
distance d(π̄z,π∗) could be based one some L-norm, or the ϵ-versions of
solution concepts (e.g., ϵ-Nash equilibrium). The difference to the pointwise
convergence of Equation 5.3 is that, in Equation 5.7, the empirical distribution
will eventually reach (within ϵ) the space of solutions but may then “wander”
inside this space without necessarily converging to any one point π∗.

• Convergence of average return:

lim
z→∞

Ūz
i = Ui(π∗), ∀i∈ I (5.8)

where Ūz
i = 1

z

∑z
e=1 Ui(πe) is the averaged expected return across episodes.

Intuitively, this convergence type can be interpreted as saying that if we
generate a new episode for each updated joint policy πe, then the average

3. For example, in a non-repeated normal-form game, aτ is the joint action selected by the agents
and hτ = ∅ since the policies are not conditioned on histories. In this book, we mainly refer to
empirical distributions in the context of non-repeated normal-form games.

“marl-book-main” — 2025/6/18 — 20:07 — page 94 — #123

94 Chapter 5

of the joint returns from these episodes will converge to the expected joint
return of a solution π∗.

These weaker convergence types are often used when a particular learning
algorithm is not technically able to achieve the convergence in Equation 5.3.
For example, the fictitious play algorithm presented in Section 6.3.1 learns
deterministic policies, meaning that it cannot represent probabilistic Nash equi-
libria, such as the uniform-random Nash equilibrium in Rock-Paper-Scissors.
However, in certain cases, it can be proven that the empirical action distribution
of fictitious play converges to a Nash equilibrium, as per Equation 5.5 (Fuden-
berg and Levine 1998). The infinitesimal gradient ascent algorithm presented
in Section 6.4.1 can learn probabilistic policies, but may still not converge
to a probabilistic Nash equilibrium, while it can be shown in non-repeated
normal-form games that the average rewards produced by the algorithm do
converge to the average rewards of a Nash equilibrium, as per Equation 5.8
(Singh, Kearns, and Mansour 2000). Lastly, the regret-matching algorithms pre-
sented in Section 6.5 can produce abrupt changes in the joint policy πz, which,
theoretically, may cause it to not converge to any one solution π∗. However, it
can be shown for normal-form games that the empirical distributions produced
by the regret-matching algorithms do converge to the set of (coarse) correlated
equilibria, as per Equation 5.7 (Hart and Mas-Colell 2000).

Note that Equation 5.3 implies all of the above weaker types of convergence.
However, it makes no claims about the performance of any individual joint
policy πz for a finite z. In other words, the above convergence types leave open
how the agents perform during learning. To address this, a stronger evaluation
criterion could require additional bounds, such as on the difference between πz

and π∗ for finite z. (See also the discussion and references in Section 5.5.2.)
In complex games, it may not be computationally practical to check for these

convergence properties. Instead, a common approach is to monitor the expected
returns Ui(πz) achieved by the joint policy as z increases, usually by visualizing
learning curves that show the progress of expected returns during learning, as
shown in Figure 2.4 (page 37). A number of such learning curves will be shown
for various MARL algorithms presented in this book. However, this evaluation
approach may not establish any relationship to the solution π∗ of the game. For
instance, even if the expected returns Ui(πz) for all i∈ I converge after some
finite z, the joint policy πz might not satisfy any of the convergence properties
of Equations 5.3 to 5.8.

To reduce notation in the remainder of this chapter (and book), we will omit
the explicit z-superscript (e.g., πz, Dz) and we usually omit Dz altogether.

“marl-book-main” — 2025/6/18 — 20:07 — page 95 — #124

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 95

5.3 Single-Agent RL Reductions

The most basic approach to using RL to learn agent policies in multi-agent
systems is to essentially reduce the multi-agent learning problem to a single-
agent learning problem. In this section, we will introduce two such approaches:
central learning applies single-agent RL directly to the space of joint actions to
learn a central policy that chooses actions for each agent; and independent learn-
ing applies single-agent RL independently to each agent to learn independent
policies, essentially ignoring the presence of other agents.

5.3.1 Central Learning

Central learning trains a single central policy πc, which receives the local
observations of all agents and selects an action for each agent, by selecting joint
actions from A = A1× ...×An. This essentially reduces the multi-agent problem
to a single-agent problem, and we can apply existing single-agent RL algorithms
to train πc. An example of central learning based on Q-learning, called central
Q-learning (CQL), is shown in Algorithm 4. This algorithm maintains joint-
action values Q(s, a) for joint actions a∈A, which is a basic concept used
by many MARL algorithms presented in this book. Central learning can be
useful because it circumvents the multi-agent aspects of the non-stationarity and
credit assignment problems (discussed in Sections 5.4.1 and 5.4.3, respectively).
However, in practice, this approach has a number of limitations.

The first limitation to note is that, in order to apply single-agent RL, central
learning requires transforming the joint reward (r1, ..., rn) into a single scalar
reward r. For the case of common-reward games, in which all agents receive
identical rewards, we can use r = ri for any i. In this case, if we use a single-
agent RL algorithm that is guaranteed to learn an optimal policy in an MDP
(such as the temporal-difference algorithms discussed in Section 2.6), then it is
guaranteed to learn a central policy πc for the common-reward stochastic game
such that πc is a Pareto-optimal correlated equilibrium. The optimality of the
single-agent RL algorithm means that πc achieves maximum expected returns
in each state s∈ S (as discussed in Section 2.4). Therefore, since the reward is
defined as r = ri for all i, we know that πc is Pareto-optimal because there can
be no other policy that achieves a higher expected return for any agent. This
also means that no agent can unilaterally deviate from its action given by πc to
improve its returns, making πc a correlated equilibrium.

Unfortunately, for zero-sum and general-sum stochastic games, it is less clear
how the reward scalarization should be done. If one is interested in maximizing
social welfare (Section 4.9) in general-sum games, one option is to use r =

∑
i ri.

“marl-book-main” — 2025/6/18 — 20:07 — page 96 — #125

96 Chapter 5

Algorithm 4 Central Q-learning (CQL) for stochastic games

1: Initialize: Q(s, a) = 0 for all s∈ S and a∈A = A1× ...×An

2: Repeat for every episode:
3: for t = 0, 1, 2, ... do
4: Observe current state st

5: With probability ϵ: choose random joint action at ∈A
6: Otherwise: choose joint action at ∈ arg maxa Q(st, a)
7: Apply joint action at, observe rewards rt

1, ..., rt
n and next state st+1

8: Transform rt
1, ..., rt

n into scalar reward rt

9: Q(st, at)←Q(st, at) +α
[
rt + γmaxa′ Q(st+1, a′)−Q(st, at)

]
However, if the desired solution is an equilibrium type solution, then no scalar
transformation may exist that leads to equilibrium policies.

The second limitation is that by training a policy over the joint-action space,
we now have to solve a decision problem with an action space that grows
exponentially in the number of agents.4 In the level-based foraging example
shown in Figure 1.2 (page 4), there are three agents that choose from among
six actions (up, down, left, right, collect, noop), leading to a joint-action space
with 63 = 216 actions. Even in this toy example, most standard single-agent RL
algorithms do not scale easily to action spaces this large.

Finally, a fundamental limitation of central learning is due to the inherent
structure of multi-agent systems. Agents are often localized entities that are
physically or virtually distributed. In such settings, communication from a
central policy πc to the agents and vice versa may not be possible or desirable,
for various reasons. Therefore, such multi-agent systems require local agent
policies πi for each agent i, which act on agent i’s local observations and
independently from other agents.

In stochastic games, in which we assume that agents can observe the full
state, it is possible to learn an optimal central policy πc that can be decomposed
into individual agent policies π1, ...,πn. This is because solving a stochastic
game via central learning amounts to solving an MDP, and MDPs always
admit deterministic optimal policies that assign probability 1 to some action
in each state (see Equation 2.26 in Section 2.4). Thus, we can decompose the

4. This exponential growth assumes that each additional agent comes with additional decision
variables. For example, in level-based foraging (Section 1.1), each agent comes with its own action
set. The reverse direction is when we have a fixed set of actions that are partitioned and assigned to
agents. In the latter case, the total number of actions remains constant, regardless of the number of
agents. We discuss this further in Section 5.4.4.

“marl-book-main” — 2025/6/18 — 20:07 — page 97 — #126

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 97

deterministic joint policy πc as

πc(s) = (π1(s) = a1, ...,πn(s) = an) (5.9)

where π(s) = a is a shorthand for π(a | s) = 1, and analogously for πi(s) = ai. A
basic way to achieve this decomposition is simply for every agent to use a
copy of πc: in any given state s, each agent i∈ I computes the joint action
(a1, ..., an) =πc(s) and executes its own action ai from the joint action. However,
if the environment is only partially observable by the agents (as in POSGs),
then it may not be possible to decompose πc into individual agent policies πi,
since each policy πi now only has access to the agent’s own observations oi.

The next section will introduce the independent learning approach that
eliminates these limitations, at the expense of introducing other challenges.

5.3.2 Independent Learning

In independent learning (often abbreviated as IL), each agent i learns its own
policy πi using only its local history of own observations, actions, and rewards,
while ignoring the existence of other agents (Tan 1993; Claus and Boutilier
1998). Agents do not observe or use information about other agents, and the
effects of other agents’ actions are simply part of the environment dynamics
from the perspective of each learning agent. Thus, similar to central learning,
independent learning reduces the multi-agent problem to a single-agent problem
from the perspective of each agent, and existing single-agent RL algorithms can
be used to learn the agent policies. An example of independent learning based
on Q-learning, called independent Q-learning (IQL), is shown in Algorithm 5.
Here, each agent uses its own copy of the same algorithm.

Independent learning naturally avoids the exponential growth in action spaces
that plagues central learning, and it can be used when the structure of the multi-
agent system requires local agent policies. It also does not require a scalar
transformation of the joint reward, as is the case in central learning. The
downside of independent learning is that it can be significantly affected by non-
stationarity caused by the concurrent learning of all agents. In an independent
learning algorithm such as IQL, from the perspective of each agent i the policies
πj of other agents j ̸= i become part of the environment’s state transition function
via5

Ti(st+1 | st, at
i) ∝

∑
a−i∈A−i

T (st+1 | st, ⟨at
i, a−i⟩)

∏
j̸=i

πj(aj | st) (5.10)

5. Recall that we use −i in the subscript to mean “all agents other than agent i” (e.g., A−i =×j̸=iAj).

“marl-book-main” — 2025/6/18 — 20:07 — page 98 — #127

98 Chapter 5

Algorithm 5 Independent Q-learning (IQL) for stochastic games

// Algorithm controls agent i
1: Initialize: Qi(s, ai) = 0 for all s∈ S, ai ∈Ai

2: Repeat for every episode:
3: for t = 0, 1, 2, ... do
4: Observe current state st

5: With probability ϵ: choose random action at
i ∈Ai

6: Otherwise: choose action at
i ∈ arg maxai

Qi(st, ai)
7: (meanwhile, other agents j ̸= i choose their actions at

j)
8: Observe own reward rt

i and next state st+1

9: Qi(st, at
i)←Qi(st, at

i) +α
[
rt

i + γmaxa′i Qi(st+1, a′i)−Qi(st, at
i)
]

where T is the game’s original state transition function defined over the joint-
action space (Section 3.3).

As each agent j continues to learn and update its policy πj, the action proba-
bilities of πj in each state s may change. Thus, from the perspective of agent i,
the transition function Ti appears to be non-stationary, when really the only
parts that change over time are the policies πj of the other agents. As a result,
independent learning approaches may produce unstable learning and may not
converge to any solution of the game. Section 5.4.1 discusses non-stationarity
in MARL in further detail.

The learning dynamics of independent learning have been studied in various
idealized models (Rodrigues Gomes and Kowalczyk 2009; Wunder, Littman,
and Babes 2010; Kianercy and Galstyan 2012; Barfuss, Donges, and Kurths
2019; Hu, Leung, and Leung 2019; Leonardos and Piliouras 2022). For example,
Wunder, Littman, and Babes (2010) study an idealized model of IQL with
epsilon-greedy exploration (as shown in Algorithm 5) that uses infinitesimal
learning steps α→ 0, which makes it possible to apply methods from linear
dynamical systems theory to analyze the dynamics of the model. Based on this
idealized model, predictions about the learning outcomes of IQL can be made
for different classes of general-sum normal-form games with two agents and
two actions, which are summarized in Figure 5.2. These classes are primarily
characterized by the number of deterministic and probabilistic Nash equilibria
the games possess. As can be seen, this idealized version of IQL is predicted to
converge to a Nash equilibrium in some of the game classes, while in others
it may not converge at all or only under certain conditions. An interesting
finding of this analysis is that in games such as Prisoner’s Dilemma, which is
a member of class 3b, IQL can have a chaotic non-convergent behavior that

“marl-book-main” — 2025/6/18 — 20:07 — page 99 — #128

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 99

Subclass 1a 1b 2a 2b 3a 3b

deterministic NE 0 0 2 2 1 1
probabilistic NE 1 1 1 1 0 0
Dominant action? No No No No Yes Yes

Det. joint act. > NE? No Yes No Yes No Yes

IQL converges? Yes No Yes Y/N Yes Y/N

Figure 5.2: Convergence of “infinitesimal” independent Q-learning (IQL) in
general-sum normal-form games with two agents and two actions (Wunder,
Littman, and Babes 2010). Games are characterized by: (1) number of determin-
istic Nash equilibria; (2) number of probabilistic Nash equilibria; (3) whether
at least one of the agents has a dominant action in the game; (4) whether there
exists a joint action that leads to higher rewards for both agents than the Nash
equilibrium of the game (for class 2a/b, this refers to the Nash equilibrium
that yields the lowest rewards to agents). Here the rewards are real-valued,
hence each game class contains an infinite number of games. For example,
class 2a includes Battle of the Sexes (Figure 4.5(a)), class 2b includes Chicken
(Figure 4.3), and class 3b includes Prisoner’s Dilemma (Figure 3.2(c)). In the
bottom row, “Yes” means that IQL will converge to a Nash equilibrium, “No”
means that IQL will not converge, and “Y/N” means that IQL converges under
certain conditions.

results in rewards that average above the expected reward under the unique Nash
equilibrium of the game. We will revisit the notion of infinitesimal learning
steps and dynamical systems in more depth in Section 6.4.

Despite their relative simplicity, independent learning algorithms still serve
as important baselines in MARL research. In fact, they can often produce
results that are competitive with state-of-the-art MARL algorithms, as shown
by the study of Papoudakis et al. (2021). In Chapter 9, we will see some of the
independent learning algorithms used in current MARL research.

5.3.3 Example: Level-Based Foraging

We compare the performance of central Q-learning (CQL), given in Algorithm 4,
and independent Q-learning (IQL), given in Algorithm 5, in an instance of the
level-based foraging environment shown in Figure 5.3. In this level-based
foraging task, two agents must collaborate in order to collect two items in a 11
by 11 grid-world. In each time step, each agent can move in one of the four
directions, attempt to collect an item, or do nothing. Each agent and item has

“marl-book-main” — 2025/6/18 — 20:07 — page 100 — #129

100 Chapter 5

1

1

1

2

Figure 5.3: Level-based foraging task used to compare central Q-learning and
independent Q-learning. This example task consists of a 11 by 11 grid world
with two agents and two items. Both agents have level 1, while one item has
level 1 and another item has level 2. All episodes start in this shown state with
the shown positions and levels.

a skill level, and one or more agents can collect an item if they are positioned
next to the item, they simultaneously attempt to collect, and the sum of their
levels is equal or higher than the item’s level. Every episode begins with the
same start state shown in Figure 5.3, in which both agents have level 1 and are
initially located in the top corners of the grid, and there are two items located in
the center with levels 1 and 2, respectively. Therefore, while the level-1 item
can be collected by any individual agent, the level-2 item requires that the two
agents collaborate in order to collect the item.

We model this learning problem as a stochastic game in which the agents
observe the full environment state, using a discounted return objective with
discount factor γ = 0.99. An agent receives a reward of 1

3 when collecting the
level-1 item, and both agents receive a reward of 1

3 when collecting the level-2
item; thus, the total (undiscounted) reward between the agents after collecting
all items is 1.6 Due to the reward discounting, the agents will need to collect
the items as quickly as possible in order to maximize their returns. Episodes
terminate when all items have been collected or after a maximum of 50 time
steps. In this example, both algorithms use a constant learning rate α= 0.01,
and an exploration rate which is linearly decayed from ϵ = 1 to ϵ = 0.05 over the
first 80,000 training time steps (recall from Section 2.7 that training time steps

6. See Section 11.3.1 for a more general definition of the reward function in level-based foraging.

“marl-book-main” — 2025/6/18 — 20:07 — page 101 — #130

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 101

0.0 0.2 0.4 0.6 0.8 1.0
Environment time steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IQL
CQL

Figure 5.4: Average discounted evaluation returns of central Q-learning (CQL)
and independent Q-learning (IQL) in the level-based foraging task shown in
Figure 5.3, with discount factor γ = 0.99. Results are averaged over 50 inde-
pendent training runs. The shaded area shows the standard deviation over the
averaged returns from each training run.

are across the episodes). For CQL, we obtain a scalar reward (Algorithm 4 in
Algorithm 4) by summing the individual rewards, that is, rt = rt

1 + rt
2.

Figure 5.4 shows the evaluation returns7 achieved by CQL and IQL in the
level-based foraging task. Note that Figure 5.4 shows discounted returns with
discount factor γ = 0.99, hence the maximum achievable return is also less than
1. IQL learns to solve this task faster than CQL, which is a result of the fact
that the IQL agents only explore 6 actions in each state while the CQL agent
has to explore 62 = 36 actions in each state. This allows the IQL agents to learn
more quickly to collect the level-1 item, which can be seen in the early jump
in evaluation returns of IQL. Eventually, both IQL and CQL converge to the
optimal joint policy in this task, in which the agent in the right corner goes
directly to the level-2 item and waits for the other agent to arrive; meanwhile,
the agent in the left corner first goes to the level-1 item and collects it, and
then goes to the level-2 item and collects it together with the other agent. This
optimal joint policy requires 13 time steps to solve the task.

7. For a reminder of the term “evaluation return” and how these learning curves are produced, see
Section 2.7.

“marl-book-main” — 2025/6/18 — 20:07 — page 102 — #131

102 Chapter 5

5.4 Challenges of MARL

MARL algorithms, including central Q-learning and independent Q-learning
introduced in this chapter, inherit certain challenges from single-agent RL such
as unknown environment dynamics, exploration-exploitation dilemmas, non-
stationarity from bootstrapping, and temporal credit assignment. In addition,
MARL algorithms face additional conceptual and algorithmic challenges as
a result of learning in a dynamic multi-agent system composed of multiple
learning agents. This section describes several of the core challenges which
together characterize MARL.

5.4.1 Non-Stationarity

A central problem in MARL is the non-stationarity resulting from the continual
co-adaptation of multiple agents as they learn from interactions with one another.
This non-stationarity can lead to cyclic dynamics, whereby a learning agent
adapts to the changing policies of other agents, which in turn adapt their policies
to the learning agent’s policy, and so on. An illustrative example of such learning
dynamics can be seen in Figure 5.5, in which two agents learn in the Rock-
Paper-Scissors matrix game using the WoLF-PHC algorithm (which will be
introduced in Section 6.4.4) to update their policies. The lines show how the
agents’ policies co-adapt over time until converging to the Nash equilibrium of
the game, in which both agents choose each action with equal probability.

While non-stationarity caused by the learning of multiple agents is a defining
characteristic of MARL, it is important to note that non-stationarity already
exists in the single-agent RL setting. To gain clarity on the problem, it is useful
to define the notion of stationarity and see how stationarity and non-stationarity
appear in single-agent RL, before moving to the multi-agent RL setting.

A stochastic process {Xt}t∈N0 is said to be stationary if the probability dis-
tribution of Xt+τ does not depend on τ ∈N0, where t and t + τ are time indices.
Intuitively, this means that the dynamics of the process do not change over time.

Now, consider a stochastic process Xt that samples the state st at each time
step t. In a Markov decision process, the process Xt is completely defined by
the state transition function, T (st | st−1, at−1), and the agent’s policy, π, which
selects the actions a∼π(· | s). If this policy does not change over time (meaning
that no learning takes place), then it can be seen that the process Xt is indeed
stationary, since st depends only on the state st−1 and action at−1 from the
previous time step (known as the Markov property), and at−1 depends only on
st−1 via π(· | st−1). Therefore, the process dynamics are independent of the time
t.

“marl-book-main” — 2025/6/18 — 20:07 — page 103 — #132

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 103

0.0 0.2 0.4 0.6 0.8 1.0
π1(Rock)

0.0

0.2

0.4

0.6

0.8

1.0

π
1(

P
ap

er
)

0.00.20.40.60.81.0
0.0

0.2

0.4

0.6

0.8

1.0

Agent 1 policy
Agent 2 policy
Converged policy

Figure 5.5: Evolving policies of two agents, each using the WoLF-PHC
algorithm (Section 6.4.4) to update policies, in the non-repeated Rock-Paper-
Scissors matrix game. The diagonal dashed line divides the plot into two
probability simplexes, one for each of the two agents. Each point in the sim-
plex for an agent corresponds to a probability distribution over the agent’s
three available actions. Each line shows the agent’s current policy at episodes
0, 5, 10, 15, ..., 145 (marked by the dots), as well as the converged policy at
episode 100, 000 (marked by a star).

However, in reinforcement learning, the policy π changes over time as a
result of the learning process. Using the definition of a learning process from
Section 5.1, the policy πz at time t is updated via πz+1 =L(Dz,πz), where Dz

contains all data collected up to time t in the current episode z as well as data
from the previous episodes. Therefore, in single-agent RL, the process Xt is
non-stationary since the policy depends on t.

This non-stationarity is a problem when learning the values of states or ac-
tions, since the values depend on subsequent actions which can change as the
policy π changes over time. For example, when using temporal-difference learn-
ing to learn action values as described in Section 2.6, the value estimate Q(st, at)
is updated via an update target that depends on value estimates for a different
state, such as in the target rt + γQ(st+1, at+1) used in the Sarsa algorithm. As

“marl-book-main” — 2025/6/18 — 20:07 — page 104 — #133

104 Chapter 5

the policy π changes during learning, the update target becomes non-stationary
since the value estimate used in the target is also changing. For this reason, the
non-stationarity problem is also referred to as the moving target problem.

In MARL, the non-stationarity is exacerbated by the fact that all agents
change their policies over time; here, πz+1 =L(Dz,πz) updates an entire joint
policy πz = (πz

1, ...,πz
n). This adds another difficulty for the learning agents in

that not only do the value estimates face non-stationarity (as in single-agent RL),
but the entire environment appears to be non-stationary from the perspective of
each agent. As we discussed in Section 5.3.2, this is encountered in independent
learning algorithms such as IQL: from the perspective of agent i, the policies of
other agents j ̸= i become part of the environment’s state transition dynamics, as
shown in Equation 5.10 (page 97). And since the policies of other agents are
changing over time as a result of learning, the environment’s state transition
dynamics from the perspective of agent i are also changing, rendering them
non-Markovian since they now also depend on the history of the interaction
(Laurent, Matignon, and Le Fort-Piat 2011).

Because of these non-stationarity issues, the usual stochastic approximation
conditions required for temporal-difference learning in single-agent RL (de-
fined in Equation 2.54, page 33) are usually not sufficient in MARL to ensure
convergence. Indeed, all known theoretical results in MARL for convergent
learning are limited to restricted game settings and mostly only work for spe-
cific algorithms. For example, IGA (Section 6.4.1) provably converges to the
average reward of a Nash equilibrium as per Equation 5.8, and WoLF-IGA
(Section 6.4.3) provably converges to a Nash equilibrium as per Equation 5.3;
however, both results are limited to normal-form games with only two agents
and two actions. Designing general and efficient MARL algorithms that have
useful learning guarantees is a difficult problem and the subject of ongoing
research (e.g., Zhang, Yang, and Basar 2019; Daskalakis, Foster, and Golowich
2020; Wei et al. 2021; Ding et al. 2022; Leonardos et al. 2022).

5.4.2 Equilibrium Selection

As was highlighted in Section 4.7, a game may have multiple equilibrium
solutions which may yield different expected returns for the agents in the game.
The (non-repeated) Chicken game discussed in Section 4.6, shown again in
Figure 5.6(a), has three different equilibria that, respectively, yield expected
returns of (7, 2), (2, 7), and ≈ (4.66, 4.66) to the two agents. Equilibrium
selection is the problem of which equilibrium the agents should agree on and
how they can achieve agreement (Harsanyi and Selten 1988).

“marl-book-main” — 2025/6/18 — 20:07 — page 105 — #134

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 105

S L
S 0,0 7,2
L 2,7 6,6

(a) Chicken

S H
S 4,4 0,3
H 3,0 2,2

(b) Stag Hunt

Figure 5.6: Matrix games with multiple equilibria.

Equilibrium selection can be a significant complicating factor for reinforce-
ment learning in games, in which agents typically do not have prior knowledge
about the game. Indeed, even if a game has a Nash equilibrium that yields
maximum returns for all agents, there can be forces that make the agents prone
to converging to a suboptimal equilibrium.

Consider the Stag Hunt matrix game shown in Figure 5.6(b). This game
models a situation in which two hunters can either hunt a stag (S) or a hare (H).
Hunting a stag requires cooperation and yields higher rewards, while hunting
a hare can be done alone but gives lower rewards. It can be seen that the joint
actions (S,S) and (H,H) are two Nash equilibria in the game (there is also a third
probabilistic equilibrium, which we omit for clarity). While (S,S) yields the
maximum reward to both agents and is Pareto-optimal, (H,H) has a relatively
lower risk in that each agent can guarantee a reward of at least 2 by choosing H.
Thus, (S,S) is the reward-dominant equilibrium meaning that it yields higher
rewards than the other equilibria, and (H,H) is the risk-dominant equilibrium in
that it has lower risk (agents can guarantee higher minimum reward) than the
other equilibria. Algorithms such as independent Q-learning can be prone to
converging to a risk-dominant equilibrium if they are uncertain about the actions
of other agents. In the Stag Hunt example, in the early stages of learning when
agents choose actions more randomly, each agent will quickly learn that action
S can give a reward of 0 while action H gives a reward of 2 or higher. This
can steer the agents to assign greater probability to action H, which reinforces
the risk-dominant equilibrium in a feedback loop since deviating from H is
penalized if the other agent chooses H.

Various approaches can be considered to tackle equilibrium selection. One
approach is to refine the space of solutions by requiring additional criteria,
such as Pareto optimality and welfare/fairness optimality. As we saw in the
example discussed in Section 4.9, in some cases this may reduce an infinite
space of solutions to a single unique solution. In some types of games, the
structure of the game can be exploited for equilibrium selection. For instance,
minimax Q-learning (Section 6.2.1) benefits from the uniqueness of equilibrium
values in zero-sum games, meaning that all minimax solutions give the same

“marl-book-main” — 2025/6/18 — 20:07 — page 106 — #135

106 Chapter 5

expected joint returns to agents. In no-conflict games such as Stag Hunt, in
which there always exists a Pareto-optimal reward-dominant equilibrium, the
Pareto actor-critic algorithm (Chapter 9) uses the fact that all agents know that
the reward-dominant equilibrium is also preferred by all the other agents. Agent
modeling (Section 6.3) can also help with equilibrium selection by making
predictions about the actions of other agents. In the Stag Hunt game, if agent 1
expects that agent 2 is likely to choose action S if agent 1 chose S in past time
steps, then agent 1 may learn to choose S more frequently and the process could
converge to both agents choosing (S,S). However, whether such an outcome
occurs depends on several factors, such as the details of the agents’ exploration
strategies and learning rates and how the agent model is used by the agent.

If the agents are able to communicate with each other, then they may send
messages about their preferred outcomes or future actions to each other, which
could be used to agree on a particular equilibrium. However, communication
can bring its own challenges if the agents are not bound to the information they
communicate (such as deviating from their announced actions) and other agents
cannot verify the received information. Moreover, if different equilibria yield
different returns for the agents, then there may still be inherent conflicts about
which equilibrium is most preferred.

5.4.3 Multi-Agent Credit Assignment

Credit assignment in RL is the problem of determining which past actions have
contributed to received rewards. In multi-agent RL, there is the additional
question of whose actions among multiple agents contributed to the rewards.
To distinguish the two problems, the first type is usually referred to as temporal
credit assignment, while the second type is referred to as multi-agent credit
assignment.

To illustrate multi-agent credit assignment and how it complicates learning,
consider the level-based foraging example introduced in Chapter 1 and shown
again in Figure 5.7. In the shown situation, assume that all three agents attempt
the “collect” action, and that as a result they all receive a reward of +1. Whose
actions led to this reward? To us, it is clear that the action of the agent on the left
did not contribute to this reward since it failed to collect the item (the agent’s
level was not large enough). Moreover, we know that the combined actions
of the two agents on the right led to the reward, rather than any individual
agent’s action. However, for a learning agent that only observes the agents’
chosen actions, environment states (before and after the actions), and received
collective reward of +1, disentangling the action contributions of all agents in
such detail can be highly non-trivial. It requires a detailed understanding of

“marl-book-main” — 2025/6/18 — 20:07 — page 107 — #136

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 107

Figure 5.7: A level-based foraging task in which a group of three robots, or
agents, must collect all items (shown as apples). Each agent and item has an
associated skill level, shown inset. A group of one or more agents can collect
an item if they are located next to the item, and the sum of the agents’ levels is
greater than or equal to the item’s level.

the world dynamics, such as the relationship between agent/item locations and
levels, and how the collect action depends on these.

The problem of multi-agent credit assignment is especially prominent in
common-reward settings (such as our example above), since each reward is
applied indiscriminately to each agent, effectively leaving it to the agents to
disentangle the effects of everyone’s actions on the rewards. This can lead to
situations in which an agent’s action is repeatedly reinforced when receiving a
positive reward to which the agent’s action made no contribution – just like for
the agent on the left in our example. However, it is important to note that the
problem of multi-agent credit assignment exists more generally and does not
depend on common rewards. If we change our example so that only the two
agents on the right receive a reward of +1 upon collecting the item, while the
agent on the left receives a reward of 0, then the same question remains from
each agent’s perspective: whose actions contributed to the agent’s reward? For
instance, the two agents on the right still have to understand that the agent on
the left did not contribute to their +1 reward.

Note that our example considers multi-agent credit assignment in one spe-
cific time instance. Over time, this is further compounded by temporal credit
assignment. Agents must also learn to give appropriate credit to their own past
actions and those of other agents. For example, not only did the collect action of
the agent on the left not contribute to the +1 reward, but neither did its previous
move actions that brought it to its current location.

“marl-book-main” — 2025/6/18 — 20:07 — page 108 — #137

108 Chapter 5

To resolve multi-agent credit assignment, an agent needs to understand the
effect of its own actions on the received reward versus the effect of the other
agents’ actions. Ascribing values to joint actions, as is done in central learn-
ing, is a useful way to disentangle each agent’s contribution to a received
reward. As a simple example, consider the Rock-Paper-Scissors matrix game
from Section 3.1. During training, suppose the two agents choose actions
(a1, a2) = (R, S) and agent 1 receives a reward of +1 (because rock beats scis-
sors), then the agents choose actions (a1, a2) = (R, P) and agent 1 receives a
reward of −1 (because paper beats rock). If agent 1 uses an action-value
function Q(s, a1) that ascribes values to its own actions (as in independent
Q-learning, see Algorithm 5), then the average value of taking action R may
appear to be 0 since Q does not explicitly model the impact of agent 2’s action.
In contrast, a joint-action value function Q1(s, a1, a2) (as in central Q-learning,
see Algorithm 4) can correctly represent the impact of agent 2’s action, by
ascribing different values to joint actions (R, S) and (R, P). Besides central
learning algorithms, the class of joint-action learning algorithms, introduced in
Chapter 6, uses such joint-action values to learn solutions for games.

Joint-action value functions also enable an agent to consider counterfactual
questions such as “What reward would I have received if agent j had done action
X instead of Y?”. Difference rewards (Wolpert and Tumer 2002; Tumer and
Agogino 2007) formulate this approach, where X corresponds to doing nothing
or a “default action.” Unfortunately, it is generally unclear whether such a default
action exists for a given environment and what it should be. Other approaches
attempt to learn a decomposition of the value function corresponding to the
agents’ individual contributions to a collective reward (e.g., Rashid et al. 2018;
Sunehag et al. 2018; Son et al. 2019; Zhou, Liu, et al. 2020). Some of these
methods will be introduced in Chapter 9.

5.4.4 Scaling to Many Agents

The ability to scale efficiently to many agents is an important goal in MARL
research. This goal is significantly complicated by the fact that the number of
joint actions can grow exponentially in the number of agents, since we have

|A| = |A1| ·… · |An|. (5.11)

In the level-based foraging example discussed in Section 5.4.3, if we change
the number of agents from 3 to 5, we also increase the number of joint actions
from 216 to 7,776. Moreover, if the agents have their own associated features in
the state s, as they do in level-based foraging (agent positions), then the number
of states |S| also increases exponentially in the number of agents.

“marl-book-main” — 2025/6/18 — 20:07 — page 109 — #138

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 109

MARL algorithms can be affected in various ways by this exponential growth.
For example, algorithms that use joint-action values Q(s, a), a∈A, such as
central Q-learning and joint-action learning (Section 6.2), are faced with an
exponential growth of the space required to represent Q as well as the number
of observations required to fill Q. Algorithms that do not use joint-action values,
such as independent learning (Section 5.3.2), can also be significantly affected
by additional agents. In particular, a larger number of agents can increase
the degree of non-stationarity caused by multiple learning agents, since each
additional agent adds another moving part that the other agents must adapt to.
Multi-agent credit assignment can also become more difficult with more agents,
since each additional agent adds a potential cause for an observed reward.

We stated at the beginning that the number of joint actions can grow expo-
nentially. In fact, it is important to note that this exponential growth may not
always exist, in particular when using the decomposition approach of multi-
agent systems discussed in Section 1.2. As an example, suppose we want to
control a power plant that has 1,000 control variables, and each variable can
take one of k possible values. Thus, an action is a vector of length 1,000, and
there are k1,000 possible actions (value assignments). To make this problem
more tractable, we could factor the action vector into n smaller vectors and use
n agents, one for each of the smaller action vectors. Each agent now deals with
a smaller action space, for example |Ai| = k

1000
n if the factored action vectors have

the same length. However, note that the total number of joint actions between
agents, |A| = |A1| · ... · |An| = k1,000, is independent of the number of agents n.

Indeed, while exponential growth due to the number of agents is an important
challenge in MARL, it is not unique to MARL. Single-agent reductions of the
problem, such as central learning, are still faced with an exponential growth
in the number of actions. Moreover, other approaches to optimal decision
making in multi-agent systems, such as model-based multi-agent planning (e.g.,
Oliehoek and Amato 2016), also have to handle the exponential growth. Still,
scaling efficiently with the number of agents is an important goal in MARL
research. Part II of this book will introduce deep learning techniques as one
way to improve the scalability of MARL algorithms.

5.5 What Algorithms Do Agents Use?

MARL approaches such as independent learning open up the possibility that
agents may use different learning algorithms. Two basic modes of operation
in MARL are self-play and mixed-play. In self-play, all agents use the same

“marl-book-main” — 2025/6/18 — 20:07 — page 110 — #139

110 Chapter 5

learning algorithm, or even the same policy. In mixed-play, agents use different
learning algorithms. We will discuss these approaches in turn in this section.

5.5.1 Self-Play

The term self-play has been used to describe two related but distinct modes
of operation in MARL. The first definition of self-play simply refers to the
assumption that all agents use the same learning algorithm (Bowling and Veloso
2002; Banerjee and Peng 2004; Powers and Shoham 2005; Conitzer and Sand-
holm 2007; Shoham, Powers, and Grenager 2007; Wunder, Littman, and Babes
2010; Chakraborty and Stone 2014). Developing algorithms that converge to
some type of equilibrium solution in self-play is at the core of much of the
literature in MARL. Essentially all of the MARL algorithms introduced in
this book operate in this way. For independent learning, self-play is usually
implicitly assumed (such as in independent Q-learning), but note that this is not
strictly a requirement since the agents may use different algorithms within the
independent learning approach.

This definition of self-play is rooted in game theory, specifically the literature
on “interactive learning” (Fudenberg and Levine 1998; Young 2004), which
studies basic learning rules for players (i.e., agents) and their ability to converge
to equilibrium solutions in game models. The principal focus is the theoretical
analysis of learning outcomes in the limit, under the standard assumption that
all players use the same learning rule. This assumption serves as an important
simplification, since the non-stationarity caused by multiple learning agents
(discussed in Section 5.4.1) can be further exacerbated if the agents use different
learning approaches. From a practical perspective, it is appealing to have one
algorithm that can be used by all agents regardless of differences in their action
and observation spaces.

Another definition of self-play, which was primarily developed in the context
of zero-sum sequential games, uses a more literal interpretation of the term by
training an agent’s policy directly against itself. In this process, the agent learns
to exploit weaknesses in its own play as well as how to eliminate such weak-
nesses. One of the earliest applications of this self-play approach in combination
with temporal-difference learning was TD-Gammon (Tesauro 1994), which
was able to achieve champion-level performance in the game of backgammon.
More recently, several algorithms combined self-play with deep RL techniques
to reach champion-level performance in diverse complex multi-agent games
(e.g., Silver et al. 2017; Silver et al. 2018; Berner et al. 2019). Population-based
training extends self-play by training policies against a distribution of other

“marl-book-main” — 2025/6/18 — 20:07 — page 111 — #140

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 111

policies, including past versions of themselves (e.g., Lanctot et al. 2017; Jader-
berg et al. 2019; Vinyals et al. 2019). We will describe this type of self-play
and population-based training in Sections 9.8 and 9.9, respectively.

To distinguish the two definitions of self-play mentioned previously, we
use the terms algorithm self-play and policy self-play, respectively. Note that
policy self-play implies algorithm self-play. An important benefit of policy
self-play is that it may learn significantly faster than algorithm self-play, since
the experiences of all agents (each using the same policy) can be combined
to train a single policy. However, policy self-play is also more restricted in
that it requires the agents in the game to have symmetrical roles and egocentric
observations, such that the same policy can be used from the perspective of
each agent. We will describe these aspects of policy self-play in Section 9.8. In
contrast, algorithm self-play has no such restriction; here, the same algorithm
can be used to learn policies for different agents that may have different roles
in the game (e.g., different actions, observations, and rewards). This applies
to independent learning algorithms such as independent Q-learning, as well as
many of the algorithms introduced in Chapter 6 and later chapters.

5.5.2 Mixed-Play

Mixed-play describes the case in which the agents use different learning algo-
rithms. One example of mixed-play can be seen in trading markets, in which the
agents may use different learning algorithms developed by the different users
or organizations that control the agents. Ad hoc teamwork (Stone et al. 2010;
Mirsky et al. 2022) is another example, in which agents must collaborate with
previously unknown other agents whose behaviors may be initially unknown.

The study of Albrecht and Ramamoorthy (2012) considered such mixed-
play settings and empirically compared various learning algorithms, including
Nash-Q (Section 6.2), JAL-AM (Section 6.3.2), WoLF-PHC (Section 6.4.4),
and a variant of regret matching (Section 6.5), in many different normal-form
games using a range of metrics, including several of the solution concepts
discussed in Chapter 4. The study concluded that there was no clear winner
among the tested algorithms, each having relative strengths and limitations in
mixed-play settings. While Papoudakis et al. (2021) provide a benchmark and
comparison of contemporary deep learning-based MARL algorithms (such as
those discussed in Chapter 9) for algorithm self-play in common-reward games,
there is currently no such study for deep learning-based MARL algorithms in
mixed-play settings.

“marl-book-main” — 2025/6/18 — 20:07 — page 112 — #141

112 Chapter 5

MARL research has also developed algorithms that aim to bridge algorithm
self-play and mixed-play. For example, the agenda of converging to an equilib-
rium solution in algorithm self-play was extended with an additional agenda
to converge to a best-response policy if other agents use a stationary policy
(Bowling and Veloso 2002; Banerjee and Peng 2004; Conitzer and Sandholm
2007). Algorithms based on targeted optimality and safety (Powers and Shoham
2004) assume that other agents are from a particular class of agents and aim to
achieve best-response returns if the other agents are indeed from that class, and
otherwise achieve at least maxmin (“security”) returns that can be guaranteed
against any other agents. For example, we could assume that other agents use a
particular policy representation, such as finite state automata or decision trees,
or that their policies are conditioned on the previous x observations from the
history (Powers and Shoham 2005; Vu, Powers, and Shoham 2006; Chakraborty
and Stone 2014). In algorithm self-play, these algorithms aim to produce
Pareto-optimal outcomes (Shoham and Leyton-Brown 2008).

5.6 Summary

In this chapter, we made a first foray into using reinforcement learning to learn
solutions for games, and we discussed some of the key challenges in the learning
process. The main concepts from this chapter are the following:

• MARL algorithms are designed to learn a joint policy that satisfies the prop-
erties of a specific solution concept (e.g., Nash equilibrium). The data used
for learning consists of a set of histories (containing the observations, actions,
and rewards of one or more agents) from multiple episodes in the game.

• Different types of convergence criteria exist to analyze and evaluate the
learning performance of MARL algorithms. The standard theoretical criterion
is convergence of the learned joint policy to a solution of the game. Weaker
criteria include convergence of the empirical distribution of joint actions
across episodes to a solution joint policy; and convergence of the averaged
returns across episodes to the expected returns under a solution joint policy.

• Two basic approaches to applying RL in games reduce the multi-agent learn-
ing problem to a single-agent learning problem. Central learning applies
single-agent RL to the space of joint actions to learn a central policy that
chooses actions for each agent. Independent learning uses single-agent RL
independently for each agent to learn independent policies, without explicitly
representing the presence of other agents.

• A key challenge in MARL is the environment non-stationarity caused by
the concurrent learning of multiple agents. Essentially, from the perspective

“marl-book-main” — 2025/6/18 — 20:07 — page 113 — #142

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges 113

of each agent, the environment appears non-stationary as the policies of the
other agents are changing over time, which breaks the Markov assumption
in game models. This can lead to cyclic dynamics where each agent ties to
adapt to the changing policies of the other agents, also known as the moving
target problem.

• Equilibrium selection is another key challenge, which can occur whenever
the game has multiple equilibria and where different equilibria yield different
expected returns for the agents. Thus, the agents face the problem of what
equilibrium they should agree to converge to, and how such agreement can
be achieved during learning.

• Additional challenges include the multi-agent credit assignment problem,
in which agents have to determine during learning whose actions among
multiple agents contributed to the received rewards; as well as scaling to
many agents and dealing with an exponential growth of the joint-action space.

• Self-play and mixed-play are two basic modes of operation in MARL. We
describe two types of self-play: in algorithm self-play, every agent uses
the same learning algorithm; while in policy self-play, an agent’s policy is
directly trained against itself. Mixed-play describes a scenario in which the
agents use different learning algorithms.

In Chapter 6, we will go beyond the basic central and independent learning
approaches introduced in this chapter by describing several families of more
specialized MARL algorithms that explicitly model and use certain aspects of
the multi-agent interaction. These algorithms use different approaches to deal
with one or more of the above challenges, which can enable them to successfully
learn different types of game solutions under certain conditions.

“marl-book-main” — 2025/6/18 — 20:07 — page 114 — #143

“marl-book-main” — 2025/6/18 — 20:07 — page 115 — #144

6 Multi-Agent Reinforcement Learning:
Foundational Algorithms

In Chapter 5, we took some first steps toward applying RL to compute solu-
tions in games: we defined a general learning process in games and different
convergence types for MARL algorithms, and we introduced the basic concepts
of central learning and independent learning which apply single-agent RL in
games. We then discussed several core challenges faced in MARL, including
non-stationarity, multi-agent credit assignment, and equilibrium selection.

Continuing in our exploration of RL methods to compute game solutions,
the present chapter will introduce several classes of foundational algorithms
in MARL. These algorithms go beyond the basic central/independent learning
approaches by explicitly modeling and using aspects of the multi-agent interac-
tion. We call them foundational algorithms because of their basic nature, and
because each algorithm type can be instantiated in different ways. As we will
see, depending on the specific instantiation used, these MARL algorithms can
successfully learn or approximate (as per the different convergence types given
in Section 5.2) different types of solutions in games.

Specifically, we will introduce four classes of MARL algorithms. Joint-action
learning is a class of MARL algorithms that use temporal-difference learning
to learn estimates of joint-action values. These algorithms can make use of
game-theoretic solution concepts to compute policies and update targets for
temporal-difference learning. Next we will discuss agent modeling, which is
the task of learning explicit models of other agents to predict their actions based
on their past chosen actions. We will show how joint-action learning can use
such agent models in combination with best-response actions to learn optimal
joint policies. The third class of MARL algorithms covered in this chapter
are policy-based learning methods, which directly learn policy parameters
using gradient-ascent techniques. Finally, we will cover basic regret matching
algorithms that aim to minimize different notions of regret and are able to
achieve no-regret outcomes.

“marl-book-main” — 2025/6/18 — 20:07 — page 116 — #145

116 Chapter 6

To simplify the descriptions in this chapter, we will focus on normal-form
games and stochastic games in which we assume full observability of environ-
ment states and actions. Part II of this book will introduce MARL algorithms
that use deep learning techniques and can be applied to the more general POSG
model. Many of the basic concepts and algorithm categories discussed in this
chapter still feature in these deep learning-based MARL algorithms.

6.1 Dynamic Programming for Games: Value Iteration

In his seminal work on stochastic games, Shapley (1953) described an iterative
procedure to compute the optimal expected returns or “values” V∗

i (s) for each
agent i and state s, in zero-sum stochastic games with two agents. These
values are the unique minimax values for the agents in the stochastic game, that
is, their expected returns when the agents use a minimax joint policy of the
stochastic game. This procedure is analogous to the classical value iteration
algorithm for MDPs (Section 2.5), and forms the foundation for a family of
temporal-difference learning algorithms discussed in Sections 6.2 and 6.3.

Algorithm 6 shows the pseudocode of the value iteration algorithm for
stochastic games. The algorithm requires access to the reward functionsRi and
state transition function T of the game, as is the case in MDP value iteration.
The algorithm starts by initializing functions Vi(s), for each agent i, which
associate a value to each possible state of the game. In the pseudocode we
initialize Vi to 0, but arbitrary initial values may be used. The algorithm then
makes two sweeps over the entire state space S:

1. The first sweep computes for each state s∈ S and agent i∈ I a matrix Ms,i

that contains entries Ms,i(a) for each joint action a∈A. The value Ms,i(a)
represents an approximation of the expected return for agent i after selecting
joint action a in state s in the stochastic game. This matrix can be viewed
as a reward function for agent i in a normal-form game associated with the
state s, that is,Ri(a) = Ms,i(a).

2. The second sweep updates each agent’s value function Vi(s) for each
state s, by using the expected return for agent i under the minimax solution
(defined in Equation 4.10 on page 66) of the non-repeated normal-form
game given by Ms,1, ..., Ms,n. We denote the minimax value for agent i by
Valuei(Ms,1, ..., Ms,n). This minimax value is unique and can be computed
efficiently as a linear program, as shown in Section 4.3.1.

Thus, the value iteration algorithm constructs a set of non-repeated normal-
form games, one for each state s∈ S, and computes their minimax values in
order to update the state values Vi(s) of the stochastic game.

“marl-book-main” — 2025/6/18 — 20:07 — page 117 — #146

Multi-Agent Reinforcement Learning: Foundational Algorithms 117

Algorithm 6 Value iteration for stochastic games

1: Initialize: Vi(s) = 0 for all s∈ S and i∈ I
2: Repeat until all Vi have converged:
3: for all states s∈ S, agents i∈ I, joint actions a∈A do

Ms,i(a)←
∑
s′∈S

T (s′ | s, a)
[
Ri(s, a, s′) + γVi(s′)

]
(6.3)

4: for all states s∈ S, agents i∈ I do

Vi(s)←Valuei(Ms,1, ..., Ms,n) (6.4)

The sweeps are repeated and the process converges to the optimal value
functions V∗

i for each agent i, which satisfy for all s∈ S, a∈A:

V∗
i (s) = Valuei(M∗

s,1, ..., M∗
s,n) (6.1)

M∗
s,i(a) =

∑
s′∈S

T (s′ | s, a)
[
Ri(s, a, s′) + γV∗

i (s′)
]

(6.2)

Given value functions V∗
i for each i∈ I, the corresponding minimax policies

of the stochastic game for each agent, πi(ai | s), are obtained by computing the
minimax solution in the non-repeated normal-form game given by M∗

s,1, ..., M∗
s,n,

for each state s∈ S. Notice that, analogous to optimal policies in MDPs, the
minimax policies in the stochastic game are conditioned only on the state rather
than state-action histories.

Notice that Equation 6.4 resembles the value update in MDP value iteration
defined in Equation 2.47 and repeated below,

V(s)←max
a∈A

∑
s′∈S

T (s′ | s, a)
[
R(s, a, s′) + γV(s′)

]
(6.5)

but replaces the maxa-operator with the Valuei-operator. In fact, in stochastic
games with a single agent (i.e., MDPs), the value iteration algorithm reduces to
MDP value iteration.1 This can be seen as follows: First, in stochastic games
with a single agent i, the value update becomes Vi(s)←Valuei(Ms,i) where Ms,i

is a vector of action values for agent i in state s. Next, recall the definition
of the maxmin value from Equation 4.10 (page 66), which simply becomes
maxπi Ui(πi) in the single-agent case. In the single-agent case (i.e., MDPs),
we know that there is always a deterministic optimal policy that in each state
chooses an optimal action with probability 1. Using all of the aforementioned,

1. Hence, despite the focus on stochastic games, Shapley (1953) can also be regarded as an early
inventor of value iteration for MDPs.

“marl-book-main” — 2025/6/18 — 20:07 — page 118 — #147

118 Chapter 6

the definition of Valuei becomes

Valuei(Ms,i) = max
ai∈Ai

Ms,i(ai) (6.6)

= max
ai∈Ai

∑
s′∈S

T (s′ | s, ai)
[
R(s, ai, s′) + γV(s′)

]
(6.7)

and, thus, Equation 6.4 reduces to MDP value iteration.
To see why the value iteration process in zero-sum stochastic games con-

verges to the optimal values V∗
i , one can show that the update operator defined

in Equation 6.4 is a contraction mapping. We described the proof for MDP
value iteration in Section 2.5, and the proof for value iteration in stochastic
games follows an analogous argument that we summarize here. A mapping
f :X →X on a || · ||–normed complete vector space X is a γ-contraction, for
γ ∈ [0, 1), if for all x, y∈X :

||f (x)− f (y)|| ≤ γ ||x− y|| (6.8)

By the Banach fixed-point theorem, if f is a contraction mapping, then for any
initial vector x∈X the sequence f (x), f (f (x)), f (f (f (x))), ... converges to a unique
fixed point x∗ ∈X such that f (x∗) = x∗. Using the max-norm ||x||∞ = maxi | xi|, it
can be shown that Equation 6.4 satisfies Equation 6.8 (Shapley 1953). Thus,
repeated application of the update operator in Equation 6.4 converges to a
unique fixed point which, by definition, is given by V∗

i for all agents i∈ I.
While our description of value iteration focused on zero-sum stochastic games

by using minimax values for Valuei (based on the original method of Shapley
(1953)), the general form shown in Algorithm 6 suggests that a similar approach
could be applied to other classes of stochastic games by using different solution
concepts in Valuei. In the next section, we will present a family of MARL
algorithms that build on this idea in combination with temporal-difference
learning, to learn equilibrium joint policies for zero-sum and general-sum
stochastic games.

6.2 Temporal-Difference Learning for Games: Joint-Action
Learning

The value iteration algorithm introduced in the previous section has useful
convergence guarantees, but it requires access to the game model (in particular,
the reward functions Ri and state transition function T), which may not be
available. Thus, the question arises whether it is possible to learn solutions to
games via a process of repeated interaction between the agents, using ideas
based on temporal-difference learning in RL (Section 2.6).

“marl-book-main” — 2025/6/18 — 20:07 — page 119 — #148

Multi-Agent Reinforcement Learning: Foundational Algorithms 119

Independent learning algorithms (such as independent Q-learning) can use
temporal-differencing, but because they ignore the special structure of games —
in particular, that the state is affected by actions of multiple agents — they suffer
from non-stationarity and multi-agent credit assignment problems. On the other
hand, central learning algorithms (such as central Q-learning) address these
issues by learning values of joint actions, but they suffer from other limitations
such as the need for reward scalarization.

Joint-action learning (JAL) refers to a family of MARL algorithms based on
temporal-difference learning that seek to address the above problems. As the
name suggests, JAL algorithms learn joint-action value functions that estimate
the expected returns of joint actions in any given state. Analogous to the
Bellman equation for MDPs (Section 2.4), in a stochastic game, the expected
return for agent i when the agents select joint action a = (a1, ..., an) in state s and
subsequently follow joint policy π is given by

Qπ
i (s, a) =

∑
s′∈S

T (s′ | s, a)

[
Ri(s, a, s′) + γ

∑
a′∈A

π(a′ | s′)Qπ
i (s′, a′)

]
. (6.9)

Specifically, the JAL algorithms we present in this section are all off-policy
algorithms that aim to learn equilibrium Q-values, Qπ∗

i , where π∗ is an equilib-
rium joint policy for the stochastic game. To reduce notation, we will drop the
π from Qπ

i unless required.
In contrast to using single-agent Q-values Q(s, a), using joint-action values

Qi(s, a1, ..., an) alone is no longer enough to select the best action for agent i in a
given state, that is, finding maxai Qi(s, a1, ..., an), since it depends on the actions
of the other agents in that state. Moreover, since a game can have multiple
equilibria that may yield different expected returns for the agents, learning
Qπ∗

i requires some way to agree on a particular equilibrium (we discussed
this equilibrium selection problem in Section 5.4.2). Therefore, using joint-
action values requires additional information or assumptions about the actions
of other agents in order to select optimal actions and to compute target values
for temporal-difference learning. In this section, we will discuss a class of JAL
algorithms that use solution concepts from game theory to derive this additional
information; hence, we will refer to them as JAL-GT.

The underlying idea in JAL-GT algorithms is that the set of joint-action
values Q1(s, ·), ..., Qn(s, ·) can be viewed as a non-repeated normal-form game
Γs for state s, in which the reward function for agent i is given by

Ri(a1, ..., an) = Qi(s, a1, ..., an). (6.10)

As convenient notation, we may also write this reward function as Γs,i(a) for
joint actions a. Thus, JAL-GT algorithms follow a similar approach to the value

“marl-book-main” — 2025/6/18 — 20:07 — page 120 — #149

120 Chapter 6

Algorithm 7 Joint-action learning with game theory (JAL-GT)

// Algorithm controls agent i
1: Initialize: Qj(s, a) = 0 for all j∈ I and s∈ S, a∈A
2: Repeat for every episode:
3: for t = 0, 1, 2, ... do
4: Observe current state st

5: With probability ϵ: choose random action at
i

6: Otherwise: solve Γst to get policies (π1, ...,πn), then sample action at
i∼πi

7: Observe joint action at = (at
1, ..., at

n), rewards rt
1, ..., rt

n, next state st+1

8: for all j∈ I do
9: Qj(st, at)←Qj(st, at) +α

[
rt

j + γValuej(Γst+1)−Qj(st, at)
]

iteration algorithm discussed in Section 6.1, in which the matrices Ms,i were the
counterpart of Γs,i. Visually, for a stochastic game with two agents (i and j) and
three possible actions for each agent, the normal-form game Γs = {Γs,i,Γs,j} in
state s can be written as

Γs,i =

Qi(s, ai,1, aj,1) Qi(s, ai,1, aj,2) Qi(s, ai,1, aj,3)

Qi(s, ai,2, aj,1) Qi(s, ai,2, aj,2) Qi(s, ai,2, aj,3)

Qi(s, ai,3, aj,1) Qi(s, ai,3, aj,2) Qi(s, ai,3, aj,3)

with an analogous matrix Γs,j for agent j using Qj. The notation ai,k means that
agent i uses the k-th action, and similarly for aj,k and agent j.

The normal-form game Γs can be solved using existing game-theoretic solu-
tion concepts, such as minimax or Nash equilibrium, to obtain an equilibrium
joint policy π∗

s . Note that π∗
s is a joint policy for a non-repeated normal-form

game (Γs), while π∗ is the equilibrium joint policy we seek to learn for the
stochastic game. Given π∗

s , action selection in state s of the stochastic game is
simply done by sampling a∼π∗

s with some random exploration (e.g., ϵ-greedy).
Update targets for temporal-difference learning of Qπ∗

i are derived by using
agent i’s expected return (or value) of the solution to the game Γs′ for the next
state s′, given by

Valuei(Γs′) =
∑
a∈A

Γs′,i(a)π∗
s′ (a) (6.11)

where π∗
s′ is the equilibrium joint policy for the normal-form game Γs′ .

The pseudocode for a general JAL-GT algorithm for stochastic games is
shown in Algorithm 7. The algorithm observes the actions and rewards of

“marl-book-main” — 2025/6/18 — 20:07 — page 121 — #150

Multi-Agent Reinforcement Learning: Foundational Algorithms 121

all agents in each time step, and maintains joint-action value functions Qj for
every agent j∈ I, in order to produce the games Γs. Several well-known MARL
algorithms can be instantiated from Algorithm 7, which differ in the specific
solution concept used to solve Γs. These algorithms can learn equilibrium
values for the stochastic game under certain conditions, as we will see in the
following subsections.

6.2.1 Minimax Q-Learning

Minimax Q-learning (Littman 1994) is based on Algorithm 7 and solves
Γs by computing a minimax solution, for example via linear programming
(Section 4.3.1). This algorithm can be applied to two-agent zero-sum stochastic
games. Minimax Q-learning is guaranteed to learn the unique minimax value
of the stochastic game under the assumption that all combinations of states and
joint actions are tried infinitely often, as well as the usual conditions on learning
rates used in single-agent RL (Littman and Szepesvári 1996). This algorithm
is essentially the temporal-difference version of the value iteration algorithm
discussed in Section 6.1.

To see the differences in the policies learned by minimax Q-learning com-
pared to independent Q-learning (Algorithm 5), it is instructive to look at the
experiments of the original paper, which proposed minimax Q-learning (Littman
1994). Both algorithms were evaluated in a simplified soccer game represented
as a zero-sum stochastic game with two agents. The game is played on a 4 by
5 grid in which each episode (i.e., match) starts in the initial state shown in
Figure 6.1, with the ball randomly assigned to one agent. Each agent can move
up, down, left, right, or stand still, and the agents’ selected actions are executed
in random order. If the agent with the ball attempts to move into the location of
the other agent, it loses the ball to the other agent. An agent scores a reward of
+1 if it moves the ball into the opponent goal (and the opponent gets a reward
of −1), after which a new episode starts. Each episode terminates as a draw
(reward of 0 for both agents) with probability 0.1 in each time step, hence the
discount factor was set to γ = 0.9 (1− γ is the probability of terminating in each
time step). Both algorithms learned over one million training time steps, used
exploration rate ϵ = 0.2, and an initial learning rate α = 1.0 which was reduced in
each time step by multiplying with 0.9999954. After training, one of the learned
policies from each algorithm was tested over 100,000 time steps against (1) a
random opponent which picks actions uniformly randomly; (2) a deterministic
hand-built opponent which uses heuristic rules for attacking and defending;
and (3) an optimal (i.e., worst-case) opponent that used Q-learning to train an
optimal policy against the other agent’s fixed policy.

“marl-book-main” — 2025/6/18 — 20:07 — page 122 — #151

122 Chapter 6

A

B
Goal Goal

Figure 6.1: Simplified grid-world soccer game with two agents (A and B). The
circle marks ball possession. Based on Littman (1994).

minimax Q independent Q
% won ep. len. % won ep. len.

vs. random 99.3 13.89 99.5 11.63
vs. hand-built 53.7 18.87 76.3 30.30
vs. optimal 37.5 22.73 0 83.33

Figure 6.2: Percentage of won episodes and average episode length (time steps)
in the simplified soccer game, when policies learned by minimax Q-learning
and independent Q-learning are tested against random, hand-built, and optimal
opponents. Based on Littman (1994).

Figure 6.2 shows the percentage of won episodes and average episode length2

for policies learned by minimax Q-learning and independent Q-learning when
tested against the random, hand-built, and optimal opponents. Against the
random opponent, the policies of both algorithms won in almost all games and
achieved similar episode lengths. Against the hand-built opponent, minimax
Q-learning achieved a win rate of 53.7 percent, which is close to the theoretical
50 percent of the exact minimax solution. Independent Q-learning achieved a
higher win rate of 76.3 percent because its learned policy was able to exploit
certain weaknesses in the hand-built opponent. On the other hand, against the
optimal opponent, minimax Q-learning achieved a win rate of 37.5 percent.
The fact that this win rate was a little further from the theoretical 50 percent
suggests that the algorithm had not fully converged during learning, resulting

2. The original work (Littman 1994) showed the number of completed episodes within the 100,000
time steps in testing. We find the average episode length (100,000 divided by number of completed
games) more intuitive to interpret.

“marl-book-main” — 2025/6/18 — 20:07 — page 123 — #152

Multi-Agent Reinforcement Learning: Foundational Algorithms 123

in weaknesses in the policy that the optimal opponent was able to exploit
in some situations. The policy learned by independent Q-learning lost in all
episodes against its optimal opponent. This is because any fully deterministic
policy can be exploited by an optimal opponent. These results show that the
policies learned by minimax Q-learning do not necessarily exploit weaknesses
in opponents when they exist, but at the same time these policies are robust to
exploitation by assuming a worst-case opponent during training.

6.2.2 Nash Q-Learning

Nash Q-learning (Hu and Wellman 2003) is based on Algorithm 7 and solves Γs

by computing a Nash equilibrium solution. This algorithm can be applied to the
general class of general-sum stochastic games with any finite number of agents.
Nash Q-learning is guaranteed to learn a Nash equilibrium of the stochastic
game, albeit under highly restrictive assumptions. In addition to trying all
combinations of states and joint actions infinitely often, the algorithm requires
that all of the encountered normal-form games Γs either (a) all have a global
optimum or (b) all have a saddle point. A joint policy π is a global optimum in
Γs if each agent individually achieves its maximum possible expected return,
that is, ∀i,π′ : Ui(π)≥Ui(π′). Thus, a global optimum is also an equilibrium
since no agent can deviate to obtain higher returns. A joint policy π is a saddle
point if it is an equilibrium and if any agent deviates from π, then all other
agents receive a higher expected return.

Either of these conditions is unlikely to exist in any encountered normal-form
game, let alone in all of the encountered games. For example, global optimality
is significantly stronger than Pareto optimality (Section 4.8), which merely
requires that there is no other joint policy that increases the expected return
of at least one agent without making other agents worse off. As an example,
in the Prisoner’s Dilemma matrix game (Figure 3.2(c)), agent 1 defecting and
agent 2 cooperating is Pareto optimal since any other joint policy will reduce
the expected return for agent 1. However, there is no global optimum since no
single joint policy can achieve the maximum possible reward for both agents at
the same time.

To see why these assumptions are required, notice that all global optima are
equivalent to each agent, meaning that they give the same expected return to
each agent. Thus, choosing a global optimum to compute Valuei circumvents
the equilibrium selection problem mentioned earlier. Similarly, it can be shown
that all saddle points of a game are equivalent in the expected returns they give
to agents, and so choosing any saddle point to compute Valuei circumvents the
equilibrium selection problem. However, an implicit additional requirement

“marl-book-main” — 2025/6/18 — 20:07 — page 124 — #153

124 Chapter 6

here is that all agents consistently choose either global optima or saddle points
when computing target values.

6.2.3 Correlated Q-Learning

Correlated Q-learning (Greenwald and Hall 2003) is based on Algorithm 7
and solves Γs by computing a correlated equilibrium. Like Nash Q-learning,
correlated Q-learning can be applied to general-sum stochastic games with a
finite number of agents.

This algorithm has two important benefits:

1. Correlated equilibrium spans a wider space of solutions than Nash equi-
librium, including solutions with potentially higher expected returns for
agents (see discussion in Section 4.6).

2. Correlated equilibria can be computed efficiently for normal-form games
via linear programming (Section 4.6.1), while computing Nash equilibria
requires quadratic programming.

Since correlated Q-learning solves Γs via correlated equilibrium, we require
a small modification to Algorithm 7: in Algorithm 7 of the algorithm, it may
not be possible to factorize a correlated equilibrium π into individual agent
policies π1, ...,πn, and hence there would be no policy πi to sample an action at

i
from. Instead, agent i can sample a joint action from the correlated equilibrium,
at∼π, and then simply take its own action at

i from this joint action. To maintain
correlations between the agents’ actions, a further modification would be to
include a central mechanism that samples a joint action from the equilibrium
and sends to each agent its own action from the joint action.

Since the space of correlated equilibria can be larger than the space of Nash
equilibria in a game, the problem of equilibrium selection — how the agents
should select a common equilibrium in Γs — becomes even more pronounced.
Greenwald and Hall (2003) define different mechanisms to select equilibria,
which ensure that there is a unique equilibrium value Valuej(Γs). One such
mechanism is to choose an equilibrium that maximizes the sum of expected
rewards of the agents, and this is what we used in the linear program presented
in Section 4.6.1. Other mechanisms include selecting an equilibrium that
maximizes the minimum or maximum of the agents’ expected rewards. In
general, however, no formal conditions are known under which correlated
Q-learning converges to a correlated equilibrium of the stochastic game.

“marl-book-main” — 2025/6/18 — 20:07 — page 125 — #154

Multi-Agent Reinforcement Learning: Foundational Algorithms 125

6.2.4 Limitations of Joint-Action Learning

We saw that Nash Q-learning requires some very restrictive assumptions to
ensure convergence to a Nash equilibrium in general-sum stochastic games,
while correlated Q-learning has no known convergence guarantees. This begs
the question: Is it possible to construct a joint-action learning algorithm based
on Algorithm 7 that converges to an equilibrium solution in any general-sum
stochastic game? As it turns out, there exist stochastic games for which the
information contained in the joint-action value functions Qj(s, a) is insufficient
to reconstruct equilibrium policies.

Consider the following two properties:

• Since Qj is conditioned on the state s (rather than the history of states and
joint actions), any equilibrium joint policy π∗ for the stochastic game that
is derived from Qj is also only conditioned on s to choose actions. Such an
equilibrium is called stationary.

• If in a given state s only one agent has a choice to make, that is, |Ai,s| > 1 for
some agent i and |Aj,s| = 1 for all other agents j ̸= i, where Ai,s is the set of
available actions for agent i in state s; then any equilibrium concept (such as
Nash equilibrium and correlated equilibrium) will reduce to a max-operator
when applied to Qj in s, that is, maxa Qi(s, a). This is by virtue of the fact
that the best response of the other agents j ̸= i is trivially their only available
action, and hence the best response for agent i is to deterministically choose
the action with the highest reward to agent i. (For simplicity, assume that any
ties between actions are resolved by choosing one action with probability 1.)

In a “turn-taking” stochastic game, where in every state only one agent has
a choice, the above two properties mean that any JAL-GT algorithm would
attempt to learn a stationary deterministic equilibrium (joint policy). Unfortu-
nately, there exist turn-taking stochastic games that have a unique stationary
probabilistic equilibrium, but no stationary deterministic equilibrium.

Zinkevich, Greenwald, and Littman (2005) provide an example of such a
game, shown in Figure 6.3. In this game, there are two agents, two states, and
two actions available to whichever agent’s turn it is. All state transitions in this
game are deterministic. It can be seen that none of the four possible combi-
nations of deterministic policies between the agents constitute an equilibrium,
because each agent always has an incentive to deviate to increase its returns. For
example, given the deterministic joint policy π1(send | s1) = 1,π2(send | s2) = 1,
agent 1 would be better off choosing the keep action in state s1. Similarly,
given joint policy π1(keep | s1) = 1,π2(send | s2) = 1, agent 2 would be better off

“marl-book-main” — 2025/6/18 — 20:07 — page 126 — #155

126 Chapter 6

send
r = (0,0)

send
r = (0,3)

s1 s2

keep
r = (3,1)

keep
r = (1,0)

Figure 6.3: NoSDE (“No Stationary Deterministic Equilibrium”) game with
two agents, two states {s1, s2}, and two actions {send, keep}. Agent 1 chooses
an action in state s1 and agent 2 chooses an action in state s2. State transitions
are deterministic and shown via the arrows, with the resulting joint reward for
the agents. The discount factor is γ = 3

4 .

choosing keep. In fact, this game has a unique probabilistic stationary equilib-
rium which is π∗

1 (send | s1) = 2
3 ,π∗

2 (send | s2) = 5
12 . Zinkevich, Greenwald, and

Littman (2005) refer to this class of games as NoSDE games (which stands for
“No Stationary Deterministic Equilibrium”) and proved the following theorem:

Theorem Let Qπ,Γ
i /Vπ,Γ

i denote the Qπ
i /Vπ

i value functions in game Γ. For
any NoSDE game Γ with a unique equilibrium joint policy π∗, there exists
another NoSDE game Γ̃ which differs from Γ only in the reward functions and
has its own unique equilibrium joint policy π̃∗ ̸=π∗, such that:

∀i : Qπ∗,Γ
i = Qπ̃∗,Γ̃

i and ∃i : Vπ∗,Γ
i ̸= V π̃∗,Γ̃

i (6.12)

This result establishes that the joint-action value functions learned by JAL-GT
algorithms may not carry sufficient information to derive the correct equilibrium
joint policy in a stochastic game. Intuitively, the left-hand equality in Equa-
tion 6.12 means that a JAL-GT algorithm using Qπ∗,Γ

i would derive the same
actions for agent i as when using Qπ̃∗,Γ̃

i , for every state s∈ S in both stochastic
games Γ and Γ̃. However, the right-hand inequality in Equation 6.12 means
that the joint policies π∗ and π̃∗ actually yield different expected returns for
some agent i between the two stochastic games. In essence, this discrepancy
is due to the fact that the unique equilibrium π̃∗ of Γ̃ requires specific action
probabilities in some states, such as in the example given above, which cannot
be computed using the Q-functions alone.

While JAL-GT cannot learn the unique probabilistic stationary equilibrium
in a NoSDE game, algorithms based on value iteration for games (such as

“marl-book-main” — 2025/6/18 — 20:07 — page 127 — #156

Multi-Agent Reinforcement Learning: Foundational Algorithms 127

JAL-GT) can converge to a cyclic sequence of actions that constitutes a “cyclic
equilibrium” in NoSDE games, as explained by Zinkevich, Greenwald, and
Littman (2005).

6.3 Agent Modeling

The game-theoretic solution concepts used in JAL-GT algorithms are normative,
in that they prescribe how agents should behave in equilibrium. But what if
some of the agents deviate from this norm? For example, by relying on the
minimax solution concept, minimax Q-learning (Section 6.2.1) assumes that the
other agent is an optimal worst-case opponent, and so it learns to play against
such an opponent — independently of the actual chosen actions of the opponent.
We saw in the soccer example in Figure 6.2 that this hard-wired assumption can
limit the algorithm’s achievable performance: minimax-Q learning learned a
generally robust minimax policy, but would fail to exploit the weaknesses of
the hand-built opponent if it was trained against such an opponent, whereas
independent Q-learning was able to outperform minimax Q-learning against the
hand-built opponent.

An alternative to making implicit normative assumptions about the behavior
of other agents is to directly model the actions of other agents based on their
observed behaviors. Agent modeling (also known as opponent modeling3)
is concerned with constructing models of other agents that can make useful
predictions about their behaviors. A general agent model is shown in Figure 6.4.
For example, an agent model may make predictions about the actions of the
modeled agent, or about the long-term goal of the agent such as wanting to
reach a certain goal location. In a partially observable environment, an agent
model may attempt to infer the beliefs of the modeled agent about the state of
the environment. To make such predictions, an agent model may use various
sources of information as input, such as the history of states and joint actions, or
any subset thereof. Agent modeling has a long history in artificial intelligence
research and, accordingly, many different methodologies have been developed
(Albrecht and Stone 2018).4

The most common type of agent modeling used in MARL is called policy
reconstruction. Policy reconstruction aims to learn models π̂j of the policies

3. The term “opponent modeling” was originally used because much of the early research in this
area focused on competitive games, such as chess. We prefer the more neutral term “agent modeling”
since other agents may not necessarily be opponents.
4. The survey of Albrecht and Stone (2018) was followed by a dedicated special journal issue on
agent modeling that contains further articles on the topic (Albrecht, Stone, and Wellman 2020).

“marl-book-main” — 2025/6/18 — 20:07 — page 128 — #157

128 Chapter 6

Agent modelObservations
(past states, actions, ...)

Prediction
(action, goal, beliefs, ...)

Figure 6.4: An agent model makes predictions about another agent (such as the
action probabilities, goals, and beliefs of the agent) based on past observations
about the agent.

πj of other agents based on their observed past actions. In general, learning
the parameters of π̂j can be framed as a supervised learning problem using the
past observed state-action pairs {(sτ , aτ

j)}t−1
τ=1 of the modeled agent. Thus, we

may choose a parameterized representation for π̂j and fit its parameters using
the (sτ , aτj)-data. Various possible representations for π̂j could be used, such as
look-up tables, finite state automata, and neural networks. The chosen model
representation should ideally allow for iterative updating to be compatible with
the iterative nature of RL algorithms.

Given a set of models for the other agents’ policies, π̂−i = {π̂j}j ̸=i, the model-
ing agent i can select a best-response policy (Section 4.2) with respect to these
models,

πi ∈BRi(π̂−i). (6.13)

Thus, while in Chapter 4 we used the concept of best-response policies as
a compact characterization of solution concepts, in this section we will see
how the best-response concept is operationalized in reinforcement learning.
In the following subsections, we will see different methods that use policy
reconstruction and best responses to learn optimal policies.

6.3.1 Fictitious Play

One of the first and most basic learning algorithms defined for non-repeated
normal-form games is called fictitious play (Brown 1951; Robinson 1951). In
fictitious play, each agent i models the policy of each other agent j as a stationary
probability distribution π̂j. This distribution is estimated by taking the empirical
distribution of agent j’s past actions. Let C(aj) denote the number of times that
agent j selected action aj prior to the current episode. Then, π̂j is defined as

π̂j(aj) =
C(aj)∑

a′j ∈Aj
C(a′

j)
. (6.14)

At the start of the first episode, before any actions have been observed from
agent j (i.e., C(aj) = 0 for all aj ∈Aj), the initial model π̂j can be the uniform
distribution π̂j(aj) = 1

|Aj |
.

“marl-book-main” — 2025/6/18 — 20:07 — page 129 — #158

Multi-Agent Reinforcement Learning: Foundational Algorithms 129

0.0 0.2 0.4 0.6 0.8 1.0
π1(Rock)

0.0

0.2

0.4

0.6

0.8

1.0

π
1(

P
ap

er
)

0.00.20.40.60.81.0
0.0

0.2

0.4

0.6

0.8

1.0

Agent 1 empirical
Agent 2 empirical
Converged policy

Figure 6.5: Evolution of empirical action distributions of two agents, each
using fictitious play, in the non-repeated Rock-Paper-Scissors matrix game. The
diagonal dashed line divides the plot into two probability simplexes, one for
each of the two agents. Each point in the simplex for an agent corresponds to a
probability distribution over the agent’s three available actions. The lines show
the agents’ empirical action distributions over the first 500 episodes of the game.
The empirical action distributions converge to the unique Nash equilibrium of
the game, in which both agents choose actions uniform-randomly.

In each episode, each agent i chooses a best-response action against the
models π̂−i = {π̂j}j ̸=i, given by

BRi(π̂−i) = arg max
ai∈Ai

∑
a−i∈A−i

Ri(⟨ai, a−i⟩)
∏
j ̸= i

π̂j(aj) (6.15)

where A−i =×j ̸=iAj, and aj refers to the action of agent j in a−i.
It is important to note that this definition of best response gives an optimal

action, in contrast to the more general definition (see Equation 4.9, page 65),
which gives best-response policies. Therefore, fictitious play cannot learn
equilibrium solutions that require randomization, such as the uniform-random
equilibrium for Rock-Paper-Scissors which we saw in Section 4.3. However,
the empirical distribution of actions (defined in Equation 5.5) in fictitious play
can converge to such randomized equilibria. Indeed, fictitious play has several
interesting convergence properties (Fudenberg and Levine 1998):

“marl-book-main” — 2025/6/18 — 20:07 — page 130 — #159

130 Chapter 6

Episode e Joint action (ae
1, ae

2) Agent model π̂2 Agent 1 action values

1 R,R (0.33, 0.33, 0.33) (0.00, 0.00, 0.00)
2 P,P (1.00, 0.00, 0.00) (0.00, 1.00,−1.00)
3 P,P (0.50, 0.50, 0.00) (−0.50, 0.50, 0.00)
4 P,P (0.33, 0.67, 0.00) (−0.67, 0.33, 0.33)
5 S,S (0.25, 0.75, 0.00) (−0.75, 0.25, 0.50)
6 S,S (0.20, 0.60, 0.20) (−0.40, 0.00, 0.40)
7 S,S (0.17, 0.50, 0.33) (−0.17,−0.17, 0.33)
8 S,S (0.14, 0.43, 0.43) (0.00,−0.29, 0.29)
9 S,S (0.13, 0.38, 0.50) (0.12,−0.38, 0.25)

10 R,R (0.11, 0.33, 0.56) (0.22,−0.44, 0.22)

Figure 6.6: First ten episodes in the non-repeated Rock-Paper-Scissors game
when both agents use fictitious play. The columns show the episode number
e, the joint action ae in episode e, agent 1’s model π̂2 of agent 2 (probabilities
assigned to R/P/S), and agent 1’s action values for R/P/S (expected reward for
each action with respect to the current model of agent 2). If multiple actions
have equal maximum value, then the first action is deterministically chosen.

• If the agents’ actions converge, then the converged actions form a Nash
equilibrium of the game.

• If in any episode the agents’ actions form a Nash equilibrium, then they will
remain in the equilibrium in all subsequent episodes.

• If the empirical distribution of each agent’s actions converges, then the
distributions converge to a Nash equilibrium of the game.

• The empirical distributions converge in several game classes, including in
two-agent zero-sum games with finite action sets (Robinson 1951).

Figure 6.5 shows the evolution of the agents’ empirical action distributions
defined in Equation 6.14 in the non-repeated Rock-Paper-Scissors matrix game
(see Section 3.1 for a description of the game), in which both agents use fictitious
play to choose actions. The first ten episodes are shown in Figure 6.6. Both
agents start with the R action and then follow identical trajectories.5 In the next
step, both agents choose the P action and the empirical action distribution gives
0.5 to R and P each, and 0 to S. The agents continue to choose the P action
until episode 3, after which the optimal action for both agents with respect to

5. The agents could also start with different initial actions and then follow non-identical trajectories;
but they would still follow a similar spiral pattern and converge to the Nash equilibrium.

“marl-book-main” — 2025/6/18 — 20:07 — page 131 — #160

Multi-Agent Reinforcement Learning: Foundational Algorithms 131

their current agent models becomes S. The agents continue to choose S until
the next “corner” of the trajectory, where both agents switch to choosing R,
and so forth. As the history length increases, the changes in the empirical
action distributions become smaller. The lines in Figure 6.5 show how the
empirical action distributions change and co-adapt over time, converging to the
only Nash equilibrium of the game, which is for both agents to choose actions
uniform-randomly.

A number of modifications of fictitious play have been proposed in the
literature to obtain improved convergence properties and generalize the method
(e.g., Fudenberg and Levine 1995; Hofbauer and Sandholm 2002; Young 2004;
Leslie and Collins 2006; Heinrich, Lanctot, and Silver 2015). Note that in
repeated normal-form games, the best response defined in Equation 6.15 is
myopic, in the sense that this best response only considers a single interaction
(recall that fictitious play is defined for non-repeated normal-form games).
However, in repeated normal-form games, the future actions of agents can
depend on the history of past actions of other agents. A more complex definition
of best responses in sequential game models, as defined in Equation 4.9, also
accounts for the long-term effects of actions. In the following sections, we will
see how MARL can combine a best-response operator with temporal-difference
learning to learn non-myopic best-response policies.

6.3.2 Joint-Action Learning with Agent Modeling

Fictitious play combines policy reconstruction and best-response actions to
learn optimal policies for non-repeated normal-form games. We can extend
this idea to the more general case of stochastic games by using the joint-action
learning framework introduced in Section 6.2. This class of JAL algorithms,
which we will call JAL-AM, uses the joint-action values in conjunction with
agent models and best responses to select actions for the learning agents and to
derive update targets for the joint-action values.

Analogous to fictitious play, the agent models learn empirical distributions
based on the past actions of the modeled agent, albeit this time conditioned
on the state in which the actions took place. Let C(s, aj) denote the number of
times that agent j selected action aj in state s, then the agent model π̂j is defined
as

π̂j(aj | s) =
C(s, aj)∑

a′j ∈Aj
C(s, a′j)

. (6.16)

Note that the action counts C(s, aj) include actions observed in the current
episode and previous episodes. If a state s is visited for the first time, then π̂j

can assign uniform probabilities to actions. Conditioning the model π̂j on the

“marl-book-main” — 2025/6/18 — 20:07 — page 132 — #161

132 Chapter 6

Algorithm 8 Joint-action learning with agent modeling (JAL-AM)

// Algorithm controls agent i
1: Initialize:
2: Qi(s, a) = 0 for all s∈ S, a∈A
3: Agent models π̂j(aj | s) = 1

|Aj |
for all j ̸= i, aj ∈Aj, s∈ S

4: Repeat for every episode:
5: for t = 0, 1, 2, ... do
6: Observe current state st

7: With probability ϵ: choose random action at
i

8: Otherwise: choose best-response action at
i ∈ arg maxai AVi(st, ai)

9: Observe joint action at = (at
1, ..., at

n), reward rt
i , next state st+1

10: for all j ̸= i do
11: Update agent model π̂j with new observations (e.g., (st, at

j))

12: Qi(st, at)←Qi(st, at) +α
[
rt

i + γmaxa′i AVi(st+1, a′
i)−Qi(st, at)

]
state s is a sensible choice, since we know that the optimal equilibrium joint
policy in a stochastic game requires only the current state rather than the history
of states and actions.

If the true policy πj is fixed or converges, and is indeed conditioned only on the
state s, then in the limit of observing each (sτ , aτj)-pair infinitely often, the model
π̂j will converge to πj. Of course, during learning, πj will not be fixed. To track
changes in πj more quickly, one option is to modify Equation 6.16 to give greater
weight to more recent observed actions in state s. For example, the empirical
probability π̂j(aj | s) may only use up to the most recent ten observed actions
of agent j in state s. Another option is to maintain a probability distribution
over a space of possible agent models for agent j, and to update this distribution
based on new observations via Bayesian learning (we will discuss this approach
in Section 6.3.3). In general, many different approaches can be considered for
constructing an agent model π̂j from observations (Albrecht and Stone 2018).

JAL-AM algorithms use the learned agent models to select actions for the
learning agent and to derive update targets for the joint-action values. Given
agent models {π̂j}j ̸=i, the value (expected return) to agent i for taking action ai

in state s is given by

AVi(s, ai) =
∑

a−i∈A−i

Qi(s, ⟨ai, a−i⟩)
∏
j ̸=i

π̂j(aj | s) (6.17)

where Qi is the joint-action value function for agent i learned by the algorithm.
Using the action values AVi, the best-response action for agent i in state s is

“marl-book-main” — 2025/6/18 — 20:07 — page 133 — #162

Multi-Agent Reinforcement Learning: Foundational Algorithms 133

0.0 0.2 0.4 0.6 0.8 1.0
Environment time steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IQL
CQL
JAL-AM

Figure 6.7: Joint-action learning with agent modeling (JAL-AM) compared to
central Q-learning (CQL) and independent Q-learning (IQL) in the level-based
foraging task from Figure 5.3. Results are averaged over fifty independent
training runs. The shaded area shows the standard deviation over the averaged
returns from each training run. All algorithms use a constant learning rate
α = 0.01 and an exploration rate which is linearly decayed from ϵ = 1 to ϵ = 0.05
over the first 80,000 time steps.

given by arg maxai AVi(s, ai); and the update target in the next state s′ uses
maxai AVi(s′, ai).

Algorithm 8 provides pseudocode for a general JAL-AM algorithm for
stochastic games. Similar to fictitious play, this algorithm learns best-response
actions rather than best-response policies. Both JAL-AM and JAL-GT are
off-policy temporal-difference learning algorithms. However, unlike JAL-GT,
which requires observing the rewards of other agents and maintaining joint-
action value functions Qj for every agent, JAL-AM does not require observing
the rewards of other agents and only maintains a single joint-action value
function Qi for the learning agent.

Figure 6.7 shows the evaluation returns of JAL-AM using agent models
defined in Equation 6.16, compared to CQL and IQL in the level-based foraging
task from Figure 5.3 (page 100). The learning curves for CQL and IQL are
copied over from Figure 5.4. In this specific task, JAL-AM converged to the
optimal joint policy faster than IQL and CQL. The agent models learned by the
JAL-AM agents reduced the variance in their update targets, as is reflected by
the smaller standard deviation in evaluation returns compared to IQL and CQL.
This allowed JAL-AM to converge (on average) to the optimal joint policy after

“marl-book-main” — 2025/6/18 — 20:07 — page 134 — #163

134 Chapter 6

about 500,000 training time steps, while IQL required about 600,000 training
time steps to converge to the optimal joint policy.

6.3.3 Bayesian Learning and Value of Information

Fictitious play (using Equation 6.14) and JAL-AM (using Equation 6.16) learn
a single model for each other agent, and compute best-response actions with re-
spect to the models. What these methods are lacking is an explicit representation
of uncertainty about the models; that is, there may be different possible models
for the other agents, and the modeling agent may have beliefs about the relative
likelihood of each model given the past actions of the modeled agents. Maintain-
ing such beliefs enables a learning agent to compute best-response actions with
respect to the different models and their associated likelihoods. Moreover, as
we will show in this section, it is possible to compute best-response actions that
maximize the value of information (VI) (Chalkiadakis and Boutilier 2003; Al-
brecht, Crandall, and Ramamoorthy 2016).6 VI evaluates how the outcomes of
an action may influence the learning agent’s beliefs about the other agents, and
how the changed beliefs will in turn influence the future actions of the learning
agent. VI also accounts for how the action may influence the future behavior of
the modeled agents. Thus, best responses based on VI can optimally trade-off
between exploring actions to obtain more accurate beliefs about agent models
on one hand, and the potential benefits and costs involved in the exploration on
the other hand. Before we define the notions of beliefs and VI in more detail,
we will give an illustrative example.

Suppose two agents play the repeated Prisoner’s Dilemma matrix game, first
discussed in Section 3.1 and shown again in Figure 6.8(a), where every episode
lasts ten time steps. In each time step, each agent can choose to either cooperate
or defect, where mutual cooperation gives a reward of−1 to each agent, but each
agent has an incentive to defect in order to achieve higher rewards. Suppose
agent 1 believes that agent 2 can have one of two possible models, which are
shown in Figures 6.8(b) and 6.8(c). The model Coop always cooperates, while
the model Grim cooperates initially until the other agent defects after which
Grim defects indefinitely. Assume agent 1 has a uniform prior belief which
assigns probability 0.5 to each model. Given this uncertainty about agent 2’s
policy, how should agent 1 choose its first action? Consider the following cases
(summarized in Figure 6.9):

6. The Bayesian learning approach discussed in this section is also known as type-based reasoning
(Albrecht, Crandall, and Ramamoorthy 2016; Albrecht and Stone 2018).

“marl-book-main” — 2025/6/18 — 20:07 — page 135 — #164

Multi-Agent Reinforcement Learning: Foundational Algorithms 135

C D
C -1,-1 -5,0
D 0,-5 -3,-3

(a) Prisoner’s Dilemma

C

 C,D

(b) Agent model “Coop”

 D
C D

 C,D C

(c) Agent model “Grim”

Figure 6.8: Two agent models for Prisoner’s Dilemma. The models are shown
as simple finite state automata, where the state (circle) specifies the model’s
action (C for cooperating, D for defecting) and the state transition arrows are
labeled by the previous action of the other agent. Starting states are shown
underlined. The model Coop always cooperates. The model Grim cooperates
initially until the other agent defects, after which Grim defects indefinitely.

• If agent 1 cooperates initially and agent 2 uses Coop, then agent 1 has
not learned anything new about agent 2’s model (meaning the probabilities
assigned by agent 1’s belief to the models will not change), since both Coop
and Grim cooperate in response to agent 1 cooperating. If agent 1 cooperates
throughout the episode, it will obtain a return of 10 · (−1) =−10. Therefore,
agent 1 will get a lower return than it could have achieved by using the defect
action against Coop.

• On the other hand, if agent 1 defects initially and agent 2 uses Coop, then
agent 2 will continue to cooperate and agent 1 will learn that agent 2 uses
Coop (meaning that agent 1’s belief will assign probability 1 to Coop), since
Grim would not cooperate in this case. With this new knowledge about
agent 2, agent 1 can achieve maximum returns by defecting throughout the
episode, resulting in a return of 10 · 0 = 0.

• However, if agent 1 defects initially but agent 2 uses Grim, then agent 2 will
defect subsequently and agent 1 will learn that agent 2 uses Grim, which
will lead agent 1 to continue defecting as its best response. Therefore, this
new knowledge about agent 2 comes at the cost of a lower return, which is
0 + 9 · (−3) =−27 (one reward of 0, followed by −3 rewards until the end of
the episode).

This example illustrates that some actions may reveal information about the
policies of other agents, and the resulting more accurate beliefs can be used
to maximize the returns; however, the same actions may carry a risk in that
they may inadvertently change the other agents’ behaviors and result in lower
achievable returns.

In the previous example, if agent 1 uses randomized exploration methods
such as ϵ-greedy exploration, then eventually it will defect, which will cause

“marl-book-main” — 2025/6/18 — 20:07 — page 136 — #165

136 Chapter 6

C,C
-1

C,C
-1

D,C

D,C

D,D

0

-3

0

...

D,D
-3

D,D
-3 ...

D,C
0

D,C
0 ...

(no information gain)

(agent 2 uses Grim)

(agent 2 uses Coop)

Figure 6.9: Value of information in the Prisoner’s Dilemma example. Arrows
show joint action of agents 1 and 2, boxes show reward for agent 1. Action C
provides no information gain to agent 1 since both Coop and Grim cooperate in
response to agent 1 cooperating. Action D will cause agent 2 to either cooperate
(Coop) or defect (Grim) in response, after which agent 1 will know which model
agent 2 uses and can select the appropriate best-response action.

agent 2 to go into the “defect mode” if it uses Grim. VI instead evaluates the
different constellations of agent 1’s models and actions, and the impact on agent
1’s future beliefs and actions under the different constellations, essentially as
we did in the previous example. Depending on how far VI looks into the future
when evaluating an action, it may decide that exploring the defect action is
not worthwhile considering the potential cost (i.e., lower achievable return) if
agent 2 uses Grim. In this case, if both agents maintain beliefs over Coop/Grim
and use VI, they may learn a joint policy in which both agents cooperate, as we
will show later in this section.

We now describe these ideas more formally, starting with beliefs over agent
models. Assume we control agent i. Let Π̂j be the space of possible agent
models for agent j, where each model π̂j ∈ Π̂j can choose actions based on the
interaction history ht. (Recall that we assume stochastic games, in which agents
fully observe the state and actions.) In our example earlier, Π̂j contains two
models π̂Coop

j and π̂Grim
j . Agent i starts with a prior belief Pr(π̂j | h0) that assigns

probabilities to each model π̂j ∈ Π̂j before observing any actions from agent j.
If no prior information is available that makes one agent model more likely than
others, then the prior belief could simply be a uniform probability distribution,
as used in our example. After observing agent j’s action at

j in state st, agent i

“marl-book-main” — 2025/6/18 — 20:07 — page 137 — #166

Multi-Agent Reinforcement Learning: Foundational Algorithms 137

0.0

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

 = (1, 1, 1)

x1

x3

x2

Before episode 1

0.0

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

 = (2, 1, 1)

x1

x3

x2

After episode 1

0.0

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

 = (2, 4, 6)

x1

x3

x2

After episode 9

2.0

2.0

2.0

PD
F

f(
x;

)

0.0
0.6
1.3
1.9
2.5
3.1
3.8
4.4
5.0
5.7

PD
F

f(
x;

)

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

PD
F

f(
x;

)

Figure 6.10: Agent 1’s beliefs about agent 2’s model (policy) after vary-
ing episodes from the Rock-Paper-Scissors non-repeated game example in
Figure 6.6 (page 130): before episode 1 (left), after episode 1 (middle), and
after episode 9 (right). Beliefs are represented as Dirichlet distributions over
probability distributions x = (x1, x2, x3) for actions R,P,S. Each point in the sim-
plex triangle shows the Dirichlet probability density (defined in Footnote 7) for
a distribution x that is mapped into the simplex coordinate space via barycentric
coordinates. Pseudocount parameters (βk) are shown next to each simplex.
Means are shown as white stars.

updates its belief by computing a Bayesian posterior distribution:

Pr(π̂j | ht+1) =
π̂j(at

j | ht) Pr(π̂j | ht)∑
π̂′

j ∈Π̂j
π̂′

j (a
t
j | ht) Pr(π̂′

j | ht)
(6.18)

Note that this Bayesian belief update is computed across episodes, meaning
that the posterior Pr(π̂j | hT) at the end of episode e is used as the prior Pr(π̂j | h0)
at the start of episode e + 1.

The above definition of beliefs assumes that Π̂j contains a finite number of
models. We can also define Π̂j to be a continuous space of agent models, in
which case the beliefs are defined as probability densities over Π̂j rather than
discrete probability distributions. For example, we may define Π̂j to contain all
possible policies π̂j(aj | s) that are conditioned on states, as we did in JAL-AM in
Equation 6.16. We can then define the belief over Π̂j based on a set of Dirichlet
distributions,7 with one Dirichlet δs corresponding to each state s∈ S to represent
a belief over possible policies π̂j(· | s) in state s, where δs is parameterized by
pseudocounts (β1, ...,β|Aj |) (one for each action). An initial setting of βk = 1
for all k produces a uniform prior belief. After observing action at

j in state st,

7. A Dirichlet distribution of order K ≥ 2 with parameters β = (β1, ...,βK) has a probability density
function given by f (x1, ..., xK ;β) = B(β)−1 ∏K

k=1 xβk−1
k , where {xk}k=1,...,K belong to the standard

K-1 simplex (i.e., the xk define a probability distribution), and B(β) is the multivariate beta function.
A Dirichlet distribution can be interpreted as specifying a likelihood over different probability
values for {xk}. It is the conjugate prior of the categorical and multinomial distributions.

“marl-book-main” — 2025/6/18 — 20:07 — page 138 — #167

138 Chapter 6

the belief update is simply done by incrementing (by 1) the pseudocount βk

in δst that is associated with at
j. The resulting posterior distribution is again a

Dirichlet distribution. Note that the mean of a Dirichlet distribution δs is given
by the probability distribution π̂j(aj,k | s) = βk∑

l βl
where βk is the pseudocount

associated with action aj,k. Therefore, the mean of the Dirichlet corresponds to
the definition of the empirical distribution used in fictitious play (Equation 6.14)
and JAL-AM (Equation 6.16).8 Example Dirichlet distributions after varying
episodes from the Rock-Paper-Scissors non-repeated game (i.e., stochastic game
with a single state) example in Figure 6.6 (page 130) can be seen in Figure 6.10.

Given finite model spaces Π̂j and beliefs Pr(π̂j | ht) for each other agent
j ̸= i, define Π̂−i =×j̸=iΠ̂j and Pr(π̂−i | h) =

∏
j ̸=i Pr(π̂j | h) for π̂−i ∈ Π̂−i. Let s(h)

denote the last state in history h (i.e., s(ht) = st), and ⟨⟩ denote the concatenation
operation. The VI of action ai ∈Ai after history h is defined via a recursive
combination of two functions:

VIi(ai | h) =
∑

π̂−i∈Π̂−i

Pr(π̂−i | h)
∑

a−i∈A−i

Qi(h, ⟨ai, a−i⟩)
∏
j ̸=i

π̂j(aj | h) (6.19)

Qi(h, a) =
∑
s′∈S

T (s′ | s(h), a)
[
Ri(s(h), a, s′) + γ max

a′i ∈Ai

VIi(a′i | ⟨h, a, s′⟩)
]

(6.20)

(The case of continuous Π̂j can be defined analogously, by using integrals
and densities instead of sums and probabilities.) VIi(ai | h) computes the VI of
action ai by summing the action values Qi(h, ⟨ai, a−i⟩) for all possible action
combinations a−i of the other agents, weighted by the probabilities assigned by
agent i’s belief to models π̂−i and the probabilities with which π̂−i would take
actions a−i. The action value Qi(h, a) is defined analogously to the Bellman
optimality equation (defined in Equation 2.25, page 28), except that the max-
operator uses VIi rather than Qi. Importantly, Qi extends the history h to ⟨h, a, s′⟩
and recurses back to VIi with the extended history. Since VIi uses the posterior
belief Pr(π̂−i | h), this means that the computation of VIi accounts for how the
beliefs will change in the future for different possible histories h. The depth of

8. However, note the difference that the Dirichlet prior is initialized with pseudocounts βk = 1
for all actions (prior to observing any actions), while the empirical distribution used in fictitious
play and JAL-AM is defined over the observed history of actions. Therefore, after one observed
action, the empirical distribution assigns probability 1 to that action while the Dirichlet mean
assigns probability less than 1. However, in practice, this difference is “washed away” as the
number of observed actions increases, and in the limit of observing infinitely many actions (or
state-action pairs), the Dirichlet mean and the empirical distribution used by fictitious play and
JAL-AM converge to the same probability distribution. Moreover, by using initial action counts of
C(aj) = 1 (or C(s, aj) = 1) for all actions, the empirical distribution is identical to the Dirichlet mean.

“marl-book-main” — 2025/6/18 — 20:07 — page 139 — #168

Multi-Agent Reinforcement Learning: Foundational Algorithms 139

the recursion9 between Qi and VIi determines how far VI evaluates the impact
of an action into the future of the interaction. Using this definition of VI, at
time t after history ht, agent i selects an action at

i with maximum VI, that is,
at

i ∈ arg maxai VIi(ai | ht).
When applied in the Prisoner’s Dilemma example given previously, using a

uniform prior belief over the two models Pr(π̂Coop
j | h0) = Pr(π̂Grim

j | h0) = 0.5, no
discounting (i.e., γ = 1), and a recursion depth equal to the length of the episode
(i.e., 10), we obtain the following VI values for agent 1’s actions in the initial
time step t = 0:

VI1(C) =−9 VI1(D) =−13.5 (6.21)

Therefore, in this example when using a uniform prior belief, cooperating has
a higher value of information than defecting. Essentially, while VI realizes
that the defect action can give absolute certainty about the model used by the
other agent, if that agent uses the Grim model then the cost of causing the
agent to defect until the end of the episode is not worth the absolute certainty in
beliefs. If both agents use this VI approach to select actions, then they will both
cooperate initially, and will continue to cooperate until the last time step. In the
last time step t = 9, the agents obtain the following VI values (for i∈ {1, 2}):

VIi(C) =−1 VIi(D) = 0 (6.22)

Thus, both agents will defect in the last time step. In this case, as this is the
last time step, there is no more risk in defecting since both Coop and Grim
are expected to cooperate (hence, in either case, defecting will give reward 0)
and the episode will finish. This is an example of the end-game effects first
mentioned in Section 3.2.

The idea of maintaining Bayesian beliefs over a space of agent models and
computing best-responses with respect to the beliefs has been studied in game
theory under the name “rational learning” (Jordan 1991; Kalai and Lehrer 1993;
Nachbar 1997; Foster and Young 2001; Nachbar 2005). A central result in
rational learning is that, under certain strict assumptions, the agents’ predictions
of future play will converge to the true distribution of play induced by the agents’
actual policies, and the agents’ policies will converge to a Nash equilibrium
(Kalai and Lehrer 1993). One important condition of the convergence result is

9. To make the recursion anchor explicit in the definition of VI, we can define VId
i and Qd

i for
recursion depth d ≥ 0, where VId

i calls Qd
i and Qd

i calls VId−1
i , and we define VId

i (ai | h) = 0 if
d = 0 or if s(h) is a terminal state (i.e., end of episode). For the case of d = 0, instead of assigning
value VId

i (ai | h) = 0, Chalkiadakis and Boutilier (2003) describe an alternative “myopic” approach
by fixing the belief Pr(π̂−i | h) at the end of the recursion, sampling agent models π̂−i from the
fixed belief, solving the corresponding MDPs in which agents −i use those sampled models, and
averaging over the resulting Q-values from the MDPs.

“marl-book-main” — 2025/6/18 — 20:07 — page 140 — #169

140 Chapter 6

that any history that has positive probability under the agents’ actual policies
must have positive probability under the agents’ beliefs (also known as “absolute
continuity”). This assumption can be violated if the best-responses of agent j
are not predicted by any model in Π̂j. In our Prisoner’s Dilemma example, if
the agents start with a prior belief that assigns probability 0.8 to Coop and 0.2
to Grim, then the agents will obtain VI values of VIi(C) =−5.8, VIi(D) =−5.4
and both agents will initially defect, which is not predicted by the Coop nor
Grim model.10 On the other hand, when using the Dirichlet beliefs discussed
earlier, then any finite history will always have non-zero probability under
the agents’ beliefs. Note that an important difference between the Bayesian
learning presented here and rational learning is that the latter does not use value
of information as defined here. Instead, rational learning assumes that agents
compute best-responses with respect to their current belief over models, without
considering how different actions may affect their beliefs in the future.

6.4 Policy-Based Learning

The algorithms presented so far in this chapter all have in common that they
estimate or learn the values of actions or joint actions. The agents’ policies are
then derived using the value functions. We saw that this approach has some
important limitations. In particular, the joint-action values learned by JAL-GT
algorithms may not carry sufficient information to derive the correct equilibrium
joint policy (Section 6.2.4); and algorithms such as fictitious play and JAL-AM
are unable to represent probabilistic policies due to their use of best-response
actions, which means that they cannot learn probabilistic equilibrium policies.

Another major category of algorithms in MARL instead uses the learning
data to directly optimize a parameterized joint policy, based on gradient-ascent
techniques. These policy-based learning algorithms have the important ad-
vantage that they can directly learn the action probabilities in policies, which
means they can represent probabilistic equilibria. As we will see, by gradually
varying the action probabilities in learned policies, these algorithms achieve
some interesting convergence properties. Thus, as is the case in single-agent
RL, there are value-based and policy-based methods in MARL. This section
will present several of the original methods developed in this latter category.

10. In fact, the choice of prior belief can have a substantial effect on the achievable returns and
convergence to equilibrium (Nyarko 1998; Dekel, Fudenberg, and Levine 2004; Albrecht, Crandall,
and Ramamoorthy 2015).

“marl-book-main” — 2025/6/18 — 20:07 — page 141 — #170

Multi-Agent Reinforcement Learning: Foundational Algorithms 141

6.4.1 Gradient Ascent in Expected Reward

We begin by examining gradient-ascent learning in general-sum non-repeated
normal-form games with two agents and two actions. It will be useful to
introduce some additional notation. First, we will write the reward matrices of
the two agents as follows:

Ri =
[

r1,1 r1,2

r2,1 r2,2

]
Rj =

[
c1,1 c1,2

c2,1 c2,2

]
(6.23)

Ri is the reward matrix of agent i and Rj is the reward matrix of agent j.
Thus, if agent i chooses action x and agent j chooses action y, then they will
receive rewards rx,y and cx,y, respectively.

Since the agents are learning policies for a non-repeated normal-form game
(where each episode consists of a single time step), we can represent their
policies as simple probability distributions:

πi = (α, 1−α) πj = (β, 1−β), α,β ∈ [0, 1] (6.24)

where α and β are the probabilities with which agent 1 and agent 2 choose
action 1, respectively. Note that this means that a joint policy π = (πi,πj) is a
point in the unit square [0, 1]2. We will write (α,β) as a shorthand for the joint
policy.

Given a joint policy (α,β), we can write the expected reward for each agent
as follows:

Ui(α,β) =αβr1,1 +α(1−β)r1,2 + (1−α)βr2,1 + (1−α)(1−β)r2,2

=αβu +α(r1,2− r2,2) +β(r2,1− r2,2) + r2,2 (6.25)

Uj(α,β) =αβc1,1 +α(1−β)c1,2 + (1−α)βc2,1 + (1−α)(1−β)c2,2

=αβu′ +α(c1,2− c2,2) +β(c2,1− c2,2) + c2,2 (6.26)

where

u = r1,1− r1,2− r2,1 + r2,2 (6.27)

u′ = c1,1− c1,2− c2,1 + c2,2. (6.28)

The gradient-ascent learning method we consider in this section updates the
agents’ policies to maximize their expected rewards defined above. Let (αk,βk)
be the joint policy at episode k. Each agent updates its policy in the direction of

“marl-book-main” — 2025/6/18 — 20:07 — page 142 — #171

142 Chapter 6

the gradient in expected reward using some step size κ> 0:

αk+1 =αk +κ
∂Ui(αk,βk)

∂αk (6.29)

βk+1 =βk +κ
∂Uj(αk,βk)

∂βk (6.30)

where the partial derivative of an agent’s expected reward with respect to its
policy takes the simple form of

∂Ui(α,β)
∂α

=βu + (r1,2− r2,2) (6.31)

∂Uj(α,β)
∂β

=αu′ + (c2,1− c2,2). (6.32)

An important special case in this procedure is when the updated joint policy
moves outside the valid probability space, that is, the unit square. This can
happen when (αk,βk) is on the boundary of the unit square, meaning at least
one of αk and βk has value 0 or 1, and the gradient points outside the unit square.
In this case, the gradient is redefined to project back onto the boundary of the
unit square, ensuring that (αk+1,βk+1) will remain valid probabilities.

From the update rule in Equations 6.29 and 6.30, we can see that this method
of learning implies some strong knowledge assumptions. In particular, each
agent must know its own reward matrix and the policy of the other agent in the
current episode k. In Section 6.4.5, we will see a generalization of this learning
method that does not require this knowledge.

6.4.2 Learning Dynamics of Infinitesimal Gradient Ascent

What kind of joint policy will the two agents learn if they follow the learning
rule given in Equations 6.29 and 6.30? Will the joint policy converge? And if
yes, to what type of solution?

We can study these questions using dynamical systems theory (Singh, Kearns,
and Mansour 2000). If we consider “infinitely small” step sizes κ→ 0, then the
joint policy will follow a continuous trajectory (α(t),β(t)) in continuous time t,
which evolves according to the following differential equation (we will write
(α,β) to refer to (α(t),β(t)) in the rest of this section),[

∂α
∂t
∂β
∂t

]
=
[

0 u
u′ 0

]
︸ ︷︷ ︸

F

[
α

β

]
+
[

(r1,2− r2,2)
(c2,1− c2,2)

]
(6.33)

“marl-book-main” — 2025/6/18 — 20:07 — page 143 — #172

Multi-Agent Reinforcement Learning: Foundational Algorithms 143

where F denotes the off-diagonal matrix that contains the terms u and u′. This
learning algorithm using an infinitesimal step size is referred to as infinitesimal
gradient ascent, or IGA for short.

The center point (α∗,β∗) which has a zero-gradient can be found by setting
the left-hand side of Equation 6.33 to zero and solving to obtain:

(α∗,β∗) =
(

c2,2− c2,1

u′
,

r2,2− r1,2

u

)
(6.34)

It can be shown that the dynamical system described in Equation 6.33 is
an affine dynamical system, which means that (α,β) will follow one of three
possible types of trajectories. The type of trajectory depends on the specific
values of u and u′. First, recall that in order to compute the eigenvalues λ of
matrix F, we have to find λ and a vector x ̸= 0 such that Fx =λx. Solving for λ
gives λ2 = uu′. Then, the three possible types of trajectories are the following:

1. If F is not invertible, then (α,β) will follow a divergent trajectory, as shown
in Figure 6.11(a). This happens if u or u′ (or both) are zero, which can
occur in common-reward, zero-sum, and general-sum games.

2. If F is invertible and has purely real eigenvalues, then (α,β) will follow
a divergent trajectory to and away from the center point, as shown in
Figure 6.11(b). This happens if uu′ > 0, which can occur in common-
reward and general-sum games but not in zero-sum games (since u =−u′,
thus uu′≤ 0).

3. If F is invertible and has purely imaginary eigenvalues, then (α,β) will fol-
low an ellipse trajectory around the center point, as shown in Figure 6.11(c).
This happens if uu′ < 0, which can occur in zero-sum and general-sum
games but not in common-reward games (since u = u′, thus uu′≥ 0).

Note that this dynamical system does not take into account the constraint
that (α,β) must lie in the unit square. Thus, the center point in general may
not lie in the unit square. In the unconstrained system, there exists at most
one point with zero-gradient (there is no such point if F is not invertible). The
constrained system, which projects gradients on the boundary of the unit square
back into the unit square, may include additional points with zero-gradient on
the boundary of the unit square. In any case, IGA converges if and only if it
reaches a point where the projected gradient is zero.

Based on the dynamical system described above, several properties of
gradient ascent learning can be established:

• (α,β) does not converge in all cases.

“marl-book-main” — 2025/6/18 — 20:07 — page 144 — #173

144 Chapter 6

(a) F not invertible (b) F has purely real eigen-
values

x

(c) F has purely imaginary
eigenvalues

Figure 6.11: The joint policy (α,β) learned by Infinitesimal Gradient Ascent
(IGA) in the unconstrained space (i.e., (α,β) may be outside the unit square)
will follow one of three possible types of trajectories, depending on properties
of the matrix F from Equation 6.33. Shown here are the general schematic
forms of the trajectory types; the exact trajectory will depend on the values of
u and u′. The plot axes correspond to values of α,β and arrows indicate the
direction of the (α,β)-trajectories. The center point which has zero-gradient (if
one exists) is marked by the star in the center. For non-invertible F, (a) shows
one possible set of trajectories, but others are possible depending on u and u′.

• If (α,β) does not converge, then the average rewards received during learning
converge to the expected rewards of some Nash equilibrium.

• If (α,β) converges, then the converged joint policy is a Nash equilibrium.

While if F is non-invertible or has real eigenvalues it can be shown that (α,β)
converges to a Nash equilibrium in the constrained system, this does not hold
if F has imaginary eigenvalues where ellipses can be wholly contained inside
the unit square, in which case (α,β) will cycle indefinitely if it follows such an
ellipse. Notably, however, Singh, Kearns, and Mansour (2000) showed that the
average rewards obtained by following such an ellipse converge to the expected
rewards of a Nash equilibrium of the game. Thus, this is an example of the
convergence type defined in Equation 5.8 (Section 5.2). An implication of this
result is that when (α,β) converges, then (α,β) must be a Nash equilibrium.
This can also be seen by the fact that (α,β) converges if and only if reaching a
point where the (projected) gradient is zero, and such points can be shown to be
Nash equilibria in the constrained system (since otherwise the gradient cannot
be zero). Finally, Singh, Kearns, and Mansour (2000) showed that these results
also hold for finite step sizes κ if κ is appropriately reduced during learning
(e.g., κk = 1

k2/3).

“marl-book-main” — 2025/6/18 — 20:07 — page 145 — #174

Multi-Agent Reinforcement Learning: Foundational Algorithms 145

6.4.3 Win or Learn Fast

The IGA learning method presented in the preceding sections guarantees that
the average rewards received by the agents converge in the limit to the expected
rewards of a Nash equilibrium. In practice, this type of convergence is relatively
weak since the reward received at any time may be arbitrarily low, as long as
this is compensated by an arbitrarily high reward in the past or future. We would
prefer that the actual policies of the agents converge to a Nash equilibrium, as
per Equation 5.3 (page 92).

As it turns out, the problem in IGA that prevents convergence of the policies
in all cases is when using a constant step size (or learning rate) κ. However, if
we allow the step size to vary over time, we can construct a sequence of step
sizes such that (αk,βk) is always guaranteed to converge to a Nash equilibrium
of the game. Specifically, we modify the learning rule to

αk+1 =αk + lki κ
∂Ui(αk,βk)

∂αk (6.35)

βk+1 =βk + lkj κ
∂Uj(αk,βk)

∂βk (6.36)

where lk
i , lk

j ∈ [lmin, lmax] > 0, and we still use κ→ 0. Thus, lk
i , lk

j may vary in
each update, and the overall step size lki/jκ is bounded.

The principle by which we vary the learning rates lk
i , lk

j is to learn quickly
when “losing” (i.e., use lmax) and to learn slowly when “winning” (i.e., use lmin).
This principle is known as win or learn fast, or WoLF (Bowling and Veloso
2002). The idea here is that if an agent is losing, it should try to adapt quickly
to catch up with the other agent. If the agent is winning, it should adapt
slowly since the other agent will likely change its policy. The determination
of losing/winning is based on comparing the actual expected rewards with the
expected rewards achieved by a Nash equilibrium policy. Formally, let αe be an
equilibrium policy chosen by agent i, and βe be an equilibrium policy chosen
by agent j. Then, the agents will use the following variable learning rates:

lki =
{

lmin if Ui(αk,βk) > Ui(αe,βk) (winning)
lmax otherwise (losing)

(6.37)

lkj =
{

lmin if Uj(αk,βk) > Uj(αk,βe) (winning)
lmax otherwise (losing)

(6.38)

This modified IGA learning rule using a variable learning rate is called WoLF-
IGA. Note that αe and βe need not be from the same equilibrium, meaning that
(αe,βe) may not form a Nash equilibrium.

“marl-book-main” — 2025/6/18 — 20:07 — page 146 — #175

146 Chapter 6

x

Figure 6.12: General form of joint policy (α,β) trajectory when using WoLF-
IGA, for the case when F(t) has purely imaginary eigenvalues and the unique
center point is contained in the unit square. The trajectory (solid line) tightens
in each quadrant and converges to the center point (gray star), which is a Nash
equilibrium. The plot axes correspond to values for α,β.

Using this variable learning rate, it can be proven that WoLF-IGA is guaran-
teed to converge to a Nash equilibrium in general-sum games with two agents
and two actions. The analysis of WoLF-IGA is near-identical to IGA: using
infinitesimal step sizes, the joint policy will follow a continuous trajectory
(α(t),β(t)) in continuous time t, which evolves according to the following
differential equation:

[
∂α
∂t
∂β
∂t

]
=
[

0 li(t)u
lj(t)u′ 0

]
︸ ︷︷ ︸

F(t)

[
α

β

]
+
[

li(t)(r1,2− r2,2)
lj(t)(c2,1− c2,2)

]
. (6.39)

As was the case for IGA, we again examine three qualitatively distinct
trajectory types based on properties of the matrix F(t), which now depends
on t due to the variable learning rates. These cases are when (1) F(t) is non-
invertible, (2) F(t) is invertible and has purely real eigenvalues, and (3) F(t) is
invertible and has purely imaginary eigenvalues. The crucial part in the analysis
is case (3), and in particular the sub-case where the center point is contained
within the unit square. This is the problematic case where IGA will not converge
to a Nash equilibrium. The WoLF variable learning rate has an important effect
in this sub-case: Bowling and Veloso (2002) showed that in WoLF-IGA, the
trajectories of (α,β) are in fact piecewise elliptical, with four pieces given by
the four quadrants around the center point (as shown in Figure 6.12), such
that the trajectories spiral toward the center point. Note that in this case, there

“marl-book-main” — 2025/6/18 — 20:07 — page 147 — #176

Multi-Agent Reinforcement Learning: Foundational Algorithms 147

exists only one center point and this is by definition a Nash equilibrium. In

each quadrant, the ellipse will “tighten” by a factor of
√

lmin
lmax

< 1, and thus the
trajectory will converge to the center point.

6.4.4 Win or Learn Fast with Policy Hill Climbing

So far, both IGA and WoLF-IGA have been defined only for normal-form games
with two agents and two actions. Moreover, these methods require complete
knowledge about the learning agent’s reward function and the policy of the
other agent, which can be quite restrictive assumptions in an RL setting. Win or
learn fast with policy hill climbing (WoLF-PHC) (Bowling and Veloso 2002) is
a MARL algorithm that can be used in general-sum stochastic games with any
finite number agents and actions; and it does not require knowledge about the
agents’ reward functions nor the policies of other agents.

Algorithm 9 shows the pseudocode for WoLF-PHC. The algorithm learns
action values Q(s, ai) as in standard Q-learning (Algorithm 9; here α denotes
the learning rate for Q-updates), and updates the policy πi using the WoLF
learning principle. When determining winning/losing to compute the learning
rate, instead of comparing the expected rewards to Nash equilibrium policies as
is done in WoLF-IGA, WoLF-PHC compares the expected reward of πi to the
expected reward of an “average” policy π̄i, which averages over past policies
(Algorithm 9). The idea is that this average policy replaces the (unknown)
Nash equilibrium policy for agent i. A similar idea is used in fictitious play
(Section 6.3.1), where it is shown that the average policy does in fact converge
to a Nash equilibrium policy in many types of games.

WoLF-PHC uses two parameters, ll, lw ∈ (0, 1] with ll > lw, which correspond
to the learning rates for losing and winning, respectively. The action probabili-
ties πi(ai | st) are updated as shown in Equation 6.43 in Algorithm 9 by adding a
term ∆(st, ai), defined as

∆(s, ai) =

{
−δs,ai if ai ̸∈ arg maxa′i Q(s, a′i)∑

a′i ̸=ai
δs,a′i otherwise (6.44)

where

δs,ai = min
(
πi(ai | s) ,

δ

|Ai|− 1

)
(6.45)

δ =

{
lw if

∑
a′i
πi(a′i | s)Q(s, a′i) >

∑
a′i
π̄i(a′i | s)Q(s, a′i)

ll otherwise
. (6.46)

The role of ∆(s, ai) is to move the policy πi closer to the current greedy
policy with respect to Q, which is done by removing probability mass δs,ai

from all non-greedy actions, and adding the sum of these masses to the greedy

“marl-book-main” — 2025/6/18 — 20:07 — page 148 — #177

148 Chapter 6

Algorithm 9 Win or learn fast with policy hill climbing (WoLF-PHC)

// Algorithm controls agent i
1: Initialize:
2: Learning rates α∈ (0, 1] and ll, lw ∈ (0, 1] with ll > lw
3: Value function Q(s, ai)← 0 and policy πi(ai | s)← 1

|Ai |
, for all s∈ S, ai ∈Ai

4: State counter C(s)← 0, for all s∈ S
5: Average policy π̄i←πi

6: Repeat for every episode:
7: for t = 0, 1, 2, ... do
8: Observe current state st

9: With probability ϵ: choose random action at
i ∈Ai

10: Otherwise: sample action from policy, at
i∼πi(· | st)

11: Observe reward rt
i and next state st+1

12: Update Q-value:

Q(st, at
i)←Q(st, at

i) +α
[

rt
i + γmax

a′i
Qi(st+1, a′

i)−Qi(st, at
i)
]

(6.40)

13: Update average policy π̄i:

C(st)←C(st) + 1 (6.41)

∀ai ∈Ai : π̄i(ai | st)← π̄i(ai | st) +
1

C(st)
(
πi(ai | st)− π̄i(ai | st)

)
(6.42)

14: Update policy πi:

∀ai ∈Ai : πi(ai | st)←πi(ai | st) +∆(st, ai) (6.43)

with ∆(st, ai) defined in Equation 6.44.

action.11 This ensures that πi(· | s) remains a valid probability distribution over
the set of actions Ai. The term δs,ai defines how much probability mass is moved
from action ai, which is nominally given by δ

|Ai |−1 , while the min-operator
ensures that no more probability mass is moved than is currently assigned to ai.
Following the WoLF-approach, the term δ assumes the lower learning rate lw if
the expected reward of πi is greater than the expected reward of π̄i (winning),
and the larger learning rate ll if the expected reward of πi is lower than or equal
to the expected reward of π̄i (losing).

11. Equation 6.44 assumes that there is only one greedy action in state s. If there are multiple greedy
actions that have maximum value in Q(s, ·), then ∆(s, ai) can be defined to spread the probability
mass uniformly across these greedy actions.

“marl-book-main” — 2025/6/18 — 20:07 — page 149 — #178

Multi-Agent Reinforcement Learning: Foundational Algorithms 149

0.0 0.2 0.4 0.6 0.8 1.0
π1(Rock)

0.0

0.2

0.4

0.6

0.8

1.0

π
1(

P
ap

er
)

0.00.20.40.60.81.0
0.0

0.2

0.4

0.6

0.8

1.0

Agent 1 policy
Agent 2 policy
Converged policy

Figure 6.13: Evolving policies of two agents, each using the WoLF-PHC algo-
rithm to update policies, in the non-repeated Rock-Paper-Scissors matrix game.
The diagonal dashed line divides the plot into two probability simplexes, one
for each of the two agents. Each point in the simplex for an agent corresponds
to a probability distribution over the agent’s three available actions. Each line
shows the agent’s current policy at episodes 0, 5, 10, 15, ..., 145 (marked by the
dots), as well as the converged policy at episode 100, 000 (marked by a star).

Figure 6.13 shows WoLF-PHC applied in the non-repeated Rock-Paper-
Scissors matrix game, where it can be seen that the agents’ policies gradually co-
adapt and converge to the unique Nash equilibrium of the game, in which both
agents choose actions uniform-randomly. The learning trajectories produced by
WoLF-PHC are similar to the trajectories produced by fictitious play shown in
Figure 6.5 (page 129), but they are “smoother” and circular rather than triangular.
This is because fictitious play uses deterministic best-response actions, which
can change abruptly over time, whereas WoLF-PHC learns action probabilities,
which can vary gradually over time.

6.4.5 Generalized Infinitesimal Gradient Ascent

We have so far examined IGA based on its ability to learn Nash equilibria or
Nash equilibrium rewards. Another major solution concept is no-regret, which
was presented in Section 4.10. In this section, we will present a gradient-based

“marl-book-main” — 2025/6/18 — 20:07 — page 150 — #179

150 Chapter 6

learning algorithm that generalizes IGA to normal-form games with more than
two agents and actions. As we will see, this generalized infinitesimal gradient
ascent (GIGA) algorithm achieves no-regret (Zinkevich 2003), which implies
that IGA also achieves no-regret.

GIGA does not require knowledge of the other agents’ policies but assumes
that it can observe the past actions of the other agents. Similarly to IGA, GIGA
updates policies using unconstrained gradients that are projected back into the
space of valid probability distributions. However, while IGA uses a gradient
in expected reward with respect to the agents’ policies, GIGA uses a gradient
in actual rewards after observing the past actions of the other agents. In the
following, we will present GIGA for games with two agents i and j, and we will
later return to the case of n > 2 agents.

Given a policy πi for agent i and an action aj for agent j, the expected reward
for agent i against action aj is

Ui(πi, aj) =
∑
ai∈Ai

πi(ai)Ri(ai, aj). (6.47)

Therefore, the gradient of this expected reward with respect to policy πi is
simply the vector of rewards for each of agent i’s available actions 1, 2, 3...,

∇πi Ui(πi, aj) =
[

∂Ui(πi,aj)
∂πi(1) , ∂Ui(πi,aj)

∂πi(2) , ∂Ui(πi,aj)
∂πi(3) , ...

]
(6.48)

=
[
Ri(1, aj), Ri(2, aj), Ri(3, aj), ...

]
. (6.49)

Given policy πk
i and observed action ak

j in episode k, GIGA updates πk
i via

two steps:
(1) π̃k+1

i ←πk
i +κk∇πk

i
Ui(πk

i , ak
j)

(2) πk+1
i ←P(π̃k+1

i)
(6.50)

where κk is the step size. Step (1) updates the policy in the direction of the
unconstrained gradient ∇πk

i
Ui(πk

i , ak
j), while step (2) projects the result back

into a valid probability space via the projection operator

P(x) = arg min
x′∈∆(Ai)

||x− x′|| (6.51)

where || · || is the standard L2-norm.12 P(x) projects a vector x back into the
space of probability distributions ∆(Ai) defined over the action set Ai.

Zinkevich (2003) showed that if all agents use GIGA to learn policies with
a step size of κk = 1√

k
, then in the limit of k→∞ the policies will achieve

no-regret. Specifically, recall the definition of regret in Equation 4.28 (page 81),

12. The L2-norm is defined as ||x|| =
√

x · x, where · is the dot product.

“marl-book-main” — 2025/6/18 — 20:07 — page 151 — #180

Multi-Agent Reinforcement Learning: Foundational Algorithms 151

then it can be shown that the regret for agent i is bounded by

Regretk
i ≤
√

k +
(√

k− 1
2

)
|Ai|r2

max (6.52)

where rmax denotes the maximum possible reward for agent i. Thus, the average
regret 1

k Regretk
i will go to zero for k→∞ (since k grows faster than

√
k),

satisfying the no-regret criterion given in Definition 12.
Note that, as mentioned in Section 4.10, the no-regret property of GIGA

implies that the empirical action distribution of agents using GIGA converges
to coarse correlated equilibrium. Finally, the above definitions also work for
games with more than two agents, since we can replace j by −i to represent a
collection of other agents that accordingly choose joint actions a−i. All of the
above definitions and results still hold for this case.

6.5 No-Regret Learning

The previous sections showed how several of the concepts defined in Chap-
ter 4 can be operationalized in MARL algorithms to learn solutions for games.
Specifically, the JAL-GT algorithms presented in Section 6.2 apply equilibrium
solutions in normal-form games (such as minimax and Nash equilibrium) to
update value estimates and select actions in stochastic games. Similarly, the
JAL-AM algorithms presented in Section 6.3.2 use best-response actions against
learned agent models to update value estimates and select actions.

Now, we will consider how definitions of regret from Section 4.10 can be
operationalized in MARL algorithms to learn solutions for games. Learning
algorithms for games that specifically aim to minimize notions of regret are
known as no-regret learners, and there exist whole families of such algorithms
(e.g., Hart and Mas-Colell 2001; Cesa-Bianchi and Lugosi 2003; Greenwald
and Jafari 2003; Zinkevich et al. 2007). These algorithms associate regrets for
not having chosen certain actions in past episodes and update their policies to
assign higher probability to actions that have high regrets. We will consider two
variants of a particularly simple approach, called regret matching (Hart and Mas-
Colell 2000), which have the property that their empirical action distributions
converge to the set of (coarse) correlated equilibria in normal-form games.

6.5.1 Unconditional and Conditional Regret Matching

We consider two variants of regret matching, which we refer to as unconditional
regret matching and conditional regret matching. These algorithms compute
action probabilities based on the definitions of unconditional and conditional
regret, respectively, which we first defined in Section 4.10. In the following, we

“marl-book-main” — 2025/6/18 — 20:07 — page 152 — #181

152 Chapter 6

will define these algorithms in the context of non-repeated normal-form games.
However, the same algorithms could, in principle, be applied to stochastic games
and even POSGs by redefining the regrets over policies instead of actions, such
as in Equation 4.30 in Section 4.10. We will begin with unconditional regret
matching, which is the simpler of the two algorithms.

Unconditional regret matching computes action probabilities that are propor-
tional to the (positive) average unconditional regrets of the actions. In
Equation 4.28 we originally defined Regretz

i with respect to the single best
action. We modify this definition slightly to define regret for individual
actions ai ∈Ai. In a general-sum normal-form game with reward functions
Ri for agents i∈ I, let ae denote the joint action from episodes e = 1, ..., z.
Agent i’s unconditional regret for not having chosen action ai ∈Ai in all of
these episodes is defined as

Regretz
i (ai) =

z∑
e=1

[
Ri(⟨ai, ae

−i⟩)−Ri(ae)
]

. (6.53)

The average unconditional regret for agent i and action ai is given by

R̄z
i (ai) =

1
z

Regretz
i (ai). (6.54)

Each agent i starts with an initial policy π1
i that can use any probability

distribution over actions ai ∈Ai (e.g., uniform probabilities). Then, given
the above definition of average unconditional regret, the policy πz

i is updated
to

πz+1
i (ai) =

[R̄z
i (ai)]+∑

a′i ∈Ai
[R̄z

i (a
′
i)]+

(6.55)

where [x]+ = max[x, 0]. If the denominator in Equation 6.55 is zero, then
πz+1

i may use any probability distribution over actions.

Conditional regret matching computes action probabilities that are propor-
tional to the (positive) average conditional regrets with respect to the
most recent selected action. Let ae denote the joint action from episodes
e = 1, ..., z. Agent i’s conditional regret for not having chosen action ai in
each episode in which it chose action a′

i is defined as

Regretz
i (a

′
i , ai) =

∑
e:ae

i =a′i

[
Ri(⟨ai, ae

−i⟩)−Ri(ae)
]

. (6.56)

The average conditional regret for agent i and actions a′
i , ai is given by

R̄z
i (a

′
i , ai) =

1
z

Regretz
i (a

′
i , ai). (6.57)

“marl-book-main” — 2025/6/18 — 20:07 — page 153 — #182

Multi-Agent Reinforcement Learning: Foundational Algorithms 153

Again, each agent i starts with an initial policy π1
i that can use any proba-

bility distribution over actions. Then, given the above definition of average
conditional regret, the policy πz

i is updated to

πz+1
i (ai) =

{ 1
η [R̄z

i (a
z
i , ai)]+ if ai ̸= az

i

1−∑a′i ̸=az
i
πz+1

i (a′
i) otherwise

(6.58)

where az
i is the action chosen by agent i in the last episode z, and η >

2 ·maxa∈A |Ri(a)| · (|Ai|− 1) is a parameter that governs how far the action
probabilities will be biased toward actions with high conditional regret (the
higher η, the lower the bias). The lower bound on η ensures that the sum
of the probabilities πz+1

i (ai) assigned to actions ai ̸= az
i is at most 1.

Before discussing the asymptotic behaviors of these regret matching algo-
rithms, we can examine their behaviors in the example from Figure 4.6 (page 82)
in the Prisoner’s Dilemma matrix game. In Prisoner’s Dilemma, D is a dominant
action since it is a best response against both D and C by the other agent. There-
fore, the unconditional regret Regretz

i (C) for action C can never be positive,
which means that [R̄z

i (C)]+ = 0 in all episodes. In our example, this results in
unconditional regret matching always assigning probability 0 to action C and
probability 1 to action D in all episodes after the first episode (the policies π1

i

in the first episode can use any probability distribution). Furthermore, note that
since Prisoner’s Dilemma is a normal-form game with only two actions for
each agent, the definition of conditional regret is equivalent to the definition
of unconditional regret. Therefore, conditional regret matching has identical
behavior to unconditional regret matching in Prisoner’s Dilemma.

6.5.2 Convergence of Regret Matching

If all agents use regret matching to update their policies, how will their regrets
evolve in the long run? For both types of regret matching, it can be proven
that each agent’s average regrets are bounded by κ 1√

z for some constant factor
κ> 0, and this holds for both unconditional and conditional regrets (Hart and
Mas-Colell 2000). Thus, in the limit of infinitely many episodes z→∞, the
average regrets R̄z

i will be at most 0 for each agent i∈ I. This satisfies the
conditions for the no-regret solution concept defined in Definition 12 (page 81).
It is interesting to note that this regret bound does not require any assumptions
about the behaviors of other agents j ̸= i in the game — they may take any
actions they like. That such regret minimization is nevertheless possible is a
result of the seminal Approachability Theorem by Blackwell (1956).

What does the no-regret property imply for the policies learned by the agents?
Based on the above regret bounds, for conditional regret matching we obtain

“marl-book-main” — 2025/6/18 — 20:07 — page 154 — #183

154 Chapter 6

for all i∈ I and all a′i , ai ∈Ai:

R̄z
i (a

′
i , ai) =

1
z

∑
e:ae

i =a′i

[
Ri(⟨ai, ae

−i⟩)−Ri(ae)
]

(6.59)

=
1
z

z∑
e=1

Ri(âe)− 1
z

z∑
e=1

Ri(ae) ≤ κ
1√
z

(6.60)

where we define

âe =

{
⟨ai, ae

−i⟩ if ae
i = a′i

ae otherwise
. (6.61)

For z→∞, we have κ 1√
z = 0, and hence we can write

1
z

z∑
e=1

Ri(âe) ≤ 1
z

z∑
e=1

Ri(ae). (6.62)

Now, consider the empirical distribution over joint actions {ae}z
e=1 given by

π̄z(a) =
1
z

z∑
e=1

[a = ae]1 (6.63)

with [x]1 = 1 if x is true, and [x]1 = 0 otherwise. The two averaged rewards in
the left-hand and right-hand sides of Equation 6.62 can be equivalently written
as expected rewards under the empirical distribution π̄z as∑

a∈A:ai=a′i

π̄z(a)Ri(⟨a′′i , a−i⟩) ≤
∑

a∈A:ai=a′i

π̄z(a)Ri(a) (6.64)

for all i∈ I and all a′i , a′′i ∈Ai.
Notice that the inequalities in Equation 6.64 correspond to the inequalities

specified in the definition of correlated equilibrium in Equation 4.19, where
we have ξ(a′

i) = a′′
i . (The equivalence may be more obvious when comparing

Equation 6.64 to the linear program definition for correlated equilibrium, given
in Section 4.6.1.) This result establishes that, if all agents use conditional regret
matching, then the empirical distribution of joint actions π̄z will converge to
the set of correlated equilibria for z→∞, as per Equation 5.7. Note, however,
that this result does not establish pointwise convergence of π̄z to a correlated
equilibrium, as per Equation 5.3. For unconditional regret matching, we obtain
an analogous result but the convergence is to coarse correlated equilibrium.

Figure 6.14 illustrates the learning process when both agents use uncondi-
tional regret matching in the non-repeated Rock-Paper-Scissors matrix game.
In this game, the sets of (coarse) correlated equilibria coincide with the set of
Nash equilibria. As can be seen in Figure 6.14(a), the actual policies πz

i of
the agents move all over the probability simplexes and show no convergent

“marl-book-main” — 2025/6/18 — 20:07 — page 155 — #184

Multi-Agent Reinforcement Learning: Foundational Algorithms 155

0.0 0.2 0.4 0.6 0.8 1.0
π1(Rock)

0.0

0.2

0.4

0.6

0.8

1.0

π
1(

P
ap

er
)

0.00.20.40.60.81.0
0.0

0.2

0.4

0.6

0.8

1.0

Agent 1 policy
Agent 2 policy

(a) Policies πz
i

0.0 0.2 0.4 0.6 0.8 1.0
π1(Rock)

0.0

0.2

0.4

0.6

0.8

1.0

π
1(

P
ap

er
)

0.00.20.40.60.81.0
0.0

0.2

0.4

0.6

0.8

1.0

Agent 1 empirical
Agent 2 empirical
Converged policy

(b) Empirical distributions π̄z
i

Figure 6.14: Evolving policies of two agents, each using unconditional regret
matching to update policies, in the non-repeated Rock-Paper-Scissors matrix
game. The diagonal dashed line divides the plots into two probability simplexes,
one for each of the two agents. Each point in the simplex for an agent cor-
responds to a probability distribution over the agent’s three available actions.
(a) Trajectories of the agents’ actual policies πz

i over 10, 000 episodes, with
policies from every tenth episode marked by a dot. (b) Trajectories of the agents’
empirical action distributions π̄z

i for the first 500 episodes, with the converged
distribution marked by a star.

behavior. Yet, despite this apparent chaotic behavior (or, rather, because of
it), Figure 6.14(b) shows that the agents’ empirical distributions π̄z

i converge
steadily to the unique Nash equilibrium of the game, in which both agents
choose actions uniformly randomly.13 Looking at the average unconditional
regrets of both agents, which are shown in Figure 6.15, we see that they steadily
reduce over the first 1,000 episodes and then enter oscillatory swings around
the zero line. The oscillation is caused by the mutual adaptation of the agents:
agent 1 repeatedly chooses actions with high average regret, which over time
will cause agent 2’s average regrets to increase for the respective best-response
actions against agent 1’s actions, which in turn will increase agent 1’s regrets for
its corresponding best-response actions, and so on. The empirical distribution
of these oscillatory action changes converges to the Nash equilibrium.

13. The empirical distributions π̄z
i for each agent i are given by the respective marginal distributions

of the joint empirical distribution π̄z, that is, π̄z
i (ai) =

∑
a−i

π̄z(⟨ai, a−i⟩).

“marl-book-main” — 2025/6/18 — 20:07 — page 156 — #185

156 Chapter 6

1 2000 4000 6000 8000 10000
Episodes

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Av

er
ag

e
un

co
nd

iti
on

al
 re

gr
et Rock

Paper
Scissors

(a) Agent 1

1 2000 4000 6000 8000 10000
Episodes

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

un
co

nd
iti

on
al

 re
gr

et Rock
Paper
Scissors

(b) Agent 2

Figure 6.15: Average unconditional regrets of both agents for actions Rock
(R), Paper (P), Scissors (S) over 10,000 episodes in the non-repeated Rock-
Paper-Scissors game. The y-axis is limited to the range [−0.2, 0.2] (the average
regrets in the first few episodes are larger than these limits).

When comparing these learning plots to the corresponding plot for WoLF-
PHC shown in Figure 6.13 (page 149), notice the important difference that
WoLF-PHC achieves a much stronger convergence than regret matching; in
WoLF-PHC the policies πz

i converge to Nash equilibrium, but in regret matching
only the empirical distribution π̄z converges to the Nash equilibrium while the
policies πz

i shown in Figure 6.14(a) do not converge.

6.6 Summary

This chapter described several families of foundational MARL algorithms which
are designed to learn different types of game solutions under certain conditions.
We summarize the main ideas as follows:

• Analogous to the value iteration algorithm for MDPs, a value iteration al-
gorithm exists for zero-sum stochastic games to learn optimal state values
for each agent. The main idea of the algorithm is to compute matrices for
each agent and state, which estimate the expected return (i.e., value) to an
agent when selecting a specific joint action in the state and following the
optimal joint policy afterward. For a given state, a normal-form game can
be constructed using the corresponding matrices of the agents. This normal-
form game is then solved via a minimax solver, to obtain a target value to
update the agents’ value estimate of the state. This value iteration algorithm
provably converges to a minimax joint policy of the stochastic game.

“marl-book-main” — 2025/6/18 — 20:07 — page 157 — #186

Multi-Agent Reinforcement Learning: Foundational Algorithms 157

• The value iteration algorithm laid the foundation for a family of MARL
algorithms known as joint-action learning. These algorithms use temporal-
difference learning in combination with game-theoretic solution concepts,
to estimate the values of joint actions and learn solutions for games. Sev-
eral instances of these algorithms can be defined that use different solution
concepts. Minimax Q-learning is a temporal-difference version of the value
iteration algorithm and converges to minimax solutions under certain condi-
tions in zero-sum stochastic games. Nash Q-learning is based on the Nash
equilibrium concept and can be applied to general-sum stochastic games with
two or more agents, but convergence to a Nash equilibrium requires very
restrictive assumptions, in part due to equilibrium selection problems.

• Agent modeling is the task of constructing models of other agents that can
make useful predictions about their behaviors. For example, a model can be
learned to predict the probabilities of another agent’s next actions, based on
observations about the past chosen actions of that agent. Given such a model,
an agent can compute best-response actions against the model. Fictitious
play is one of the earliest learning algorithms for normal-form games that
operates in this way, and is able to converge to Nash equilibria in several
types of normal-form games. Joint-action learning algorithms can also learn
such agent models and combine them with temporal-difference learning to
learn best-response policies for the agents.

• Bayesian learning approaches for agent modeling compute probabilities over
multiple possible models based on past observations. Using the concept of
value of information, such methods can compute best-response actions that
can trade off between maximizing an agent’s expected returns and discovering
the true model of an agent.

• Policy-based learning methods directly optimize the parameters of some
probabilistic policy functions. In contrast to methods that estimate joint-
action values, policy-based methods can directly adjust the probabilities in
policies using techniques based on gradient ascent. By considering infinitely
small update steps, the learning behaviors of these methods can be analyzed
using dynamical systems theory. For example, basic infinitesimal gradient
ascent can converge to Nash equilibria in normal-form games, or alternatively
converge to the expected rewards under a Nash equilibrium.

• No-regret learning algorithms learn policies with the aim to minimize notions
of regrets for not taking certain actions in past episodes. Unconditional regret
matching is a no-regret learning algorithm that achieves zero unconditional
regret in the long run, and the empirical distribution of joint actions converges
to the set of coarse correlated equilibria in normal-form games. Similarly,

“marl-book-main” — 2025/6/18 — 20:07 — page 158 — #187

158 Chapter 6

conditional regret matching achieves zero conditional regret in the long run,
and the empirical distribution converges to the set of correlated equilibria.

This chapter concludes the first part of this book. The chapters in this first part
of the book have laid out the foundations of MARL, by defining game models
and solution concepts for games, as well as the basic ideas and challenges of
using RL techniques to learn solutions in games. Building on these foundations,
Part II of this book will introduce novel MARL algorithms that leverage deep
learning techniques to learn solutions for complex games.

“marl-book-main” — 2025/6/18 — 20:07 — page 159 — #188

II MULTI-AGENT DEEP REINFORCEMENT LEARNING:
ALGORITHMS AND PRACTICE

Part II of this book will build on the foundations introduced in Part I and present
MARL algorithms that use deep learning to represent value functions and agent
policies. As we will see, deep learning is a powerful tool that enables MARL
to scale to more complex problems than is possible with tabular methods. The
chapters in this part will introduce the basic concepts of deep learning and show
how deep learning techniques can be integrated into RL and MARL to produce
powerful learning algorithms.

Chapter 7 provides an introduction to deep learning, including the building
blocks of neural networks, foundational architectures, and the components
of gradient-based optimization used to train neural networks. This chapter
primarily serves as a concise introduction to deep learning for readers unfamiliar
with the field and explains all foundational concepts required to understand the
following chapters. Chapter 8 then introduces deep RL, explaining how to use
neural networks to learn value functions and policies for RL algorithms.

Chapter 9 builds on the previous chapters and introduces multi-agent deep RL
algorithms. The chapter begins by discussing different modes of training and
execution, which determine the information available to agents during and after
learning. The chapter then revisits the class of independent learning algorithms
with deep learning, before presenting advanced topics including multi-agent
policy gradient algorithms, value decomposition, and agent modeling. The
chapter also shows how agents can share parameters and experiences in multi-
agent deep RL algorithms to further improve the learning efficiency. Finally, the
chapter presents self-play and population-based training in MARL, which have
led to breakthroughs in tackling very complex multi-agent games. Chapters 10
and 11 conclude this part of the book by discussing practical considerations for
the implementation of MARL algorithms and presenting environments that can
serve as benchmarks and a playground to study these algorithms.

“marl-book-main” — 2025/6/18 — 20:07 — page 160 — #189

“marl-book-main” — 2025/6/18 — 20:07 — page 161 — #190

7 Deep Learning

In this chapter, we provide a concise introduction to deep learning, a learning
framework for function approximation. The chapter begins by motivating why
we need function approximation in RL and MARL to tackle complex envi-
ronments. We will introduce feedforward neural networks as the foundational
architecture of neural networks. The chapter then introduces gradient-based
optimization techniques as the main approach to train neural networks, before
introducing architectures designed for high-dimensional and sequential inputs.
This chapter only covers the basic concepts of deep learning and is not meant
to be a comprehensive or complete summary of this vast field. We refer the
interested reader to the textbooks by Goodfellow, Bengio, and Courville (2016),
Fleuret (2023), and Prince (2023) for a more comprehensive overview of deep
learning. Chapters 8 and 9 will build on the present chapter and show how deep
learning can be used in RL and MARL.

7.1 Function Approximation for Reinforcement Learning

Before discussing what deep learning is and how it works, it is useful to see
why deep learning is omnipresent in RL research nowadays. What does deep
learning offer over other techniques used to learn value functions, policies, and
other models in RL?

Part I introduced MARL algorithms in their classical form, using tabular
methods to represent value functions and policies of agents. These methods
are referred to as “tabular” because their value function can be thought of as
a large table, with each state-action pair corresponding to a single table entry
containing the value estimate for that particular input to the value function.
This representation of tabular MARL has two important limitations. First, the
table grows linearly with the number of possible inputs to the represented value
function, rendering tabular MARL infeasible for complex problems like Go,

“marl-book-main” — 2025/6/18 — 20:07 — page 162 — #191

162 Chapter 7

G

Figure 7.1: A maze environment in which a single agent must reach a goal
location (G). The agent has seen several states, including s1 and s3 during its
trajectories, and tries to estimate values for the circled states s2 and s4. An agent
with a tabular value function cannot generalize in this manner and would need to
explicitly experience trajectories with s2 and s4 to be able to learn accurate value
estimates. In contrast, a value function using function approximation techniques
(such as linear value functions or deep learning) may be able to generalize and
estimate the values of s2 and s4 to be similar to s1 and s3, respectively.

video games, and most real-world applications. For example, the state space
of the board game of Go is estimated to contain approximately 10170 possible
states. Storing, managing, and updating a table with this number of entries is
completely infeasible for modern computers. Second, tabular value functions
update each value estimate in isolation. For tabular MARL, an agent will update
its value estimate for the state s after visiting this state, and leave its value
function for any other state unchanged. These isolated updates for visited states
and actions come with theoretical guarantees for tabular MARL algorithms, but
it means that an agent has to encounter states before being able to learn their
values. This can render tabular MARL algorithms inefficient in tasks with large
state or action spaces. For learning in complex tasks, it is therefore essential
that agents have the ability to generalize to novel states. Encountering a specific
state should ideally allow an agent to update not just its value estimate for this
particular state but also update its estimates for different states that are in some
sense similar to the encountered state.

To illustrate the benefits of generalization, consider the following example
depicted in Figure 7.1. In this single-agent environment, the agent needs to

“marl-book-main” — 2025/6/18 — 20:07 — page 163 — #192

Deep Learning 163

navigate a maze and reach the goal location (G) to receive a positive reward.
Given this reward function, the expected discounted returns of an optimal policy
in a state depend on the path length of the state to the goal. Hence, two states that
are similar in their path length to the goal should have similar value estimates.
Considering the circled states in Figure 7.1, we would expect the value estimate
for state s2 to be similar to the value of s1. Likewise, the value of s4 should be
similar to the value of s3. Tabular value functions are trained on each of these
states in isolation, but function approximation offers value functions that can
generalize. This generalization can enable approximate value functions to pick
up on the relationships between states and their respective values, and provide
reasonable value estimates for s2 and s4 before encountering these states.

7.2 Linear Function Approximation

Given these limitations of tabular MARL, there is a clear need for value func-
tions that generalize across states. Function approximation addresses both of
these limitations by learning a function f (x; θ) for some input x∈Rdx , with dx

denoting the dimensionality of x, to approximate a target function f ∗(x). We
denote the parameters of the parameterized function by θ∈Rd, with d cor-
responding to the total number of learnable parameters. Training a function
approximator involves an optimization process to find a set of parameter values
θ such that f accurately approximates a target function f ∗:

∀x : f (x; θ)≈ f ∗(x) (7.1)

For example in RL, f ∗ might be a value function representing the expected
returns for a given state s as input.

One approach for function approximation is to represent f (x; θ) as a linear
function defined over predefined features of states. For instance, a linear state-
value function can be written as

V̂(s; θ) = θ⊤x(s) =
d∑

k=1

θkxk(s) (7.2)

with θ∈Rd and x(s)∈Rd denoting the vectors of parameters and state features,
respectively. Note that the state-value function is not limited to be linear with
respect to the state itself, but linear with respect to the state feature vector.
The state feature vector represents a predetermined encoding of states into
a d-dimensional vector. Such an encoding of states can represent non-linear
functions; for example, x(s) might represent a vector of polynomials where
each entry represents a combination of values that make up the full state up
to a fixed degree. During training, the value function is continually updated

“marl-book-main” — 2025/6/18 — 20:07 — page 164 — #193

164 Chapter 7

by optimizing its parameters θ, typically using gradient-based optimization
techniques. Section 7.4 will provide a more detailed description of gradient-
based optimization (for the more general case of deep learning, which includes
linear function approximation), but in a nutshell we search for parameters θ that
minimize an objective function. Consider the hypothetical example in which
we aim to learn a linear state-value function and already know the true values
Vπ(s) for several states. We can minimize the mean squared error between the
approximate value function V̂(s; θ) and true values Vπ(s):

θ∗ = arg min
θ

Es∈S

[(
Vπ(s)− V̂(s; θ)

)2
]

(7.3)

To learn the optimal parameters θ∗, which minimize the mean squared error,
we can compute the gradient of the error with respect to θ and follow this
gradient “downward.” Following this optimization process, the approximate
value function V̂(·; θ) will get closer to the true value function Vπ(s). The
obtained approximate value function can also generalize to states for which we
have not seen the true value, since the same parameters θ are used to compute
the value of all states. In our maze example (Figure 7.1), given sufficient training
data, the optimal parameters θ might be able to encode the relationship between
the path length to the goal and the value of a state. After such parameters are
learned, the value function can provide reasonable value estimates for states s2

and s4 despite not having been trained on these states.
The main benefit of linear value functions is their simplicity and ability to

generalize. However, linear function approximation heavily relies on the selec-
tion of state features represented in x(s), as V̂(s; θ) is constrained to be a linear
function with respect to these state features. Finding such state features can be
non-trivial, depending on the task we want to solve, and thus requires domain
knowledge. In particular, it can be very difficult to find appropriate features
for environments with high-dimensional state representations, e.g. including
images or language such that the desired value function can be represented as a
linear function over these features.

In contrast to linear function approximation, deep learning provides a univer-
sal method for function approximation that is able to automatically learn feature
representations of states, and is able to represent non-linear, complex functions
that can generalize to novel states. In the following sections, we will introduce
the fundamental building blocks of deep learning and their optimization process,
before discussing their concrete application to RL and MARL in Chapter 8 and
Chapter 9, respectively.

“marl-book-main” — 2025/6/18 — 20:07 — page 165 — #194

Deep Learning 165

Figure 7.2: An illustration of a feedforward neural network with three layers.
The input x∈R3 is processed by two hidden layers with parameters θ1 and θ2,
respectively, and a single scalar output is computed in the final output layer
with parameters θ3.

7.3 Feedforward Neural Networks

Deep learning encompasses a family of machine learning techniques that apply
neural networks as function approximators. These networks consist of many
units organized in sequential layers, with each unit computing comparably
simple but non-linear calculations (visualized in Figure 7.2). This sequence
of non-linear transformations allows neural networks to approximate complex
functions, which cannot be represented with linear function approximation.
Neural networks are very flexible and have emerged as the most prominent type
of function approximators in machine learning. In the following sections of this
chapter, we will explain how neural networks work, and how we can optimize
these complex function approximators.

Feedforward neural networks—also called deep feedforward networks, fully
connected neural networks, or multi-layer perceptrons (MLPs)—are the simplest
and most prominent architecture of neural networks, and commonly appear as
building blocks of more complex architectures. Feedforward neural networks
are structured into multiple sequential layers, with the first layer processing the
given input x and any subsequent layer processing the output of the previous
layer. Each layer is defined as a parameterized function and is composed of
many units. The output of the overall layer consists of the concatenation of all
its units’ outputs. We typically refer to the first layer as the input layer and the
last layer as the output layer. All layers in between are called hidden layers
since they compute internal representations that are typically hidden from the
user. An entire feedforward neural network is defined by the composition of

“marl-book-main” — 2025/6/18 — 20:07 — page 166 — #195

166 Chapter 7

Figure 7.3: An illustration of a single neural unit computing a scalar output
given an input x∈R3. First, a weighted sum over the input features is computed
using the vector multiplication of w∈R3 and the input x and a scalar bias b∈R
is added. Finally, a non-linear activation function g :R→R is applied to obtain
the scalar output.

the functions of all layers by sequentially feeding the output of the previous
layer into the next layer. For example, a feedforward neural network with three
layers (or two hidden layers), visualized in Figure 7.2, can be written as

f (x; θ) = f3(f2(f1(x; θ1); θ2); θ3) (7.4)

where θk corresponds to the parameters of layer k and θ =
⋃

k θ
k denotes the

parameters of the entire network. We denote the number of units in the kth
layer by dk. The number of layers is referred to as the depth of the neural
network and the number of units in a layer is referred to as the width or hidden
dimension of the layer. The generality and representational capacity, that is, the
complexity of functions a neural network can represent, largely depend on the
depth of the network and the dimensionality of each of its layers. The universal
approximation theorem states that feedforward neural networks with as few
as a single hidden layer are able to approximate any continuous function on a
closed and bounded subset of real-valued vectors given sufficient hidden units
(Cybenko 1989; Hornik, Stinchcombe, and White 1989; Hornik 1991; Leshno
et al. 1993). However, training deeper neural networks with multiple layers
can result in better performance and generalization at an equivalent number of
total parameters (Goodfellow, Bengio, and Courville 2016). To understand how
these networks approximate the overall function f (x; θ), we will first explain
individual units within layers before explaining how to compose all these pieces
together to form the entire network.

7.3.1 Neural Unit

An individual unit of a neural network in layer k represents a parameterized
function fk,u :Rdk−1→R that processes the output of the previous layer given
by the output of each of its dk−1 units. Note that for a unit in the first layer the

“marl-book-main” — 2025/6/18 — 20:07 — page 167 — #196

Deep Learning 167

Name Equation Hyperparameters

Rectified linear unit (ReLU) max (0, x) None
Leaky ReLU max (cx, x) 0 < c < 1

Exponential linear unit (ELU)

{
x if x > 0

α(ex− 1) otherwise
α > 0

Hyperbolic tangent tanh(x) = e2x−1
e2x+1 None

Sigmoid 1
1+e−x None

Figure 7.4: Summary of commonly used activation functions for input x∈R.

input x∈Rdx is used instead. First, a unit computes a weighted sum over its
input features using a weight vector w∈Rdk−1 and adding a scalar bias b∈R to
the weighted sum. This first computation represents a linear transformation and
is followed by a non-linear activation function gk. The entire computation of a
neural unit is visualized in Figure 7.3 and can be formalized as

fk,u(x; θk
u) = gk

(
w⊤x + b

)
(7.5)

with parameters θk
u ∈Rdk−1+1 containing the weight vector w as well as the scalar

bias b. Applying non-linear activation functions to the output of each unit is
essential, because the composition of two linear functions, f and g, can only
represent a linear function itself. Therefore, composing an arbitrary number
of neural units without non-linear activation functions would only result in a
linear function. During the optimization of a feedforward neural network, the
parameters θk

u of each unit in the network are optimized.

7.3.2 Activation Functions

There are many possible activation functions g to apply in neural units. Some
common choices are listed in Figure 7.4. The rectified linear unit, short
ReLU (Jarrett et al. 2009; Nair and Hinton 2010), applies a non-linear trans-
formation but remains “close to linear.” This has useful implications for
gradient-based optimization used to update neural network parameters. More-
over, ReLU is able to output zero values instead of outputting values close to
zero, which can be desirable for networks to learn representations that have
many zero entries (also referred to as representational sparsity) and computa-
tional efficiency. Other activation functions that are commonly applied in neural
networks include tanh, sigmoid, and several variations of the ReLU function
such as leaky ReLU and exponential linear units (ELU). For a visualization
of these activation functions, see Figure 7.5. The tanh and sigmoid activation

“marl-book-main” — 2025/6/18 — 20:07 — page 168 — #197

168 Chapter 7

0

2

4

g(
x)

ReLU

0

2

4
ELU (= 1.0)

0

2

4

g(
x)

Leaky ReLU (c = 0.01)

0

2

4
Leaky ReLU (c = 0.1)

4 3 2 1 0 1 2 3 4
x

0

2

4

g(
x)

Tanh

4 3 2 1 0 1 2 3 4
x

0

2

4
Sigmoid

Figure 7.5: Common non-linear activation functions defined in Figure 7.4.

functions are most commonly applied to restrict the output of a neural network
to be within the ranges (−1, 1) or (0, 1), respectively. If no such constraints are
required, ReLU and variations of the ReLU function are commonly applied as
default activation functions.

7.3.3 Composing a Network from Layers and Units

A feedforward neural network is composed of several layers, as visualized in
Figure 7.2, with each layer consisting of many neural units, each of which rep-
resents a parameterized function (Section 7.3.1). The kth layer of a feedforward
neural network receives the output of the previous layer xk−1 ∈Rdk−1 as input
and itself computes an output xk ∈Rdk . By aggregating all neural units of the
kth layer, we can write its computation as

fk(xk−1; θk) = gk
(
W⊤

k xk−1 + bk
)

(7.6)

with activation function gk, weight matrix Wk ∈Rdk−1×dk , and bias vector bk ∈
Rdk . The parameters of the layer k consist of the weight matrix as well as the
bias vector, θk = Wk ∪ bk. Note that the computation of the layer can be seen as
the parallel computation of its dk neural units and aggregating their outputs to
a vector xk. The weight matrix and bias vector contain the weight vectors and
bias of each of the neural units within the layer, respectively, as their column
entries. Considering the calculation of a single layer in this vectorized way

“marl-book-main” — 2025/6/18 — 20:07 — page 169 — #198

Deep Learning 169

3. Compute loss2. Forward pass

4. Backpropagation

1. Inputs 1. Targets

5. Gradient descent

Update parameters

Figure 7.6: The training loop for gradient-based optimization of a neural net-
work parameterized by θ: 1. From a dataset D of input-output pairs (x, y), a
subset of pairs is sampled as a batch. 2. The prediction f (x; θ) is computed
for each input x in the batch. 3. The loss function L is computed between
the predictions f (x; θ) and the corresponding target values y in the batch. 4.
The gradients of the loss function with respect to the network parameters θ are
computed using backpropagation. 5. The parameters θ are updated using a
gradient-based optimizer. Then, the loop starts again with the updated parame-
ters θ.

naturally gives rise to an efficient computation and alternative interpretation
of the operation of a single layer: the high-dimensional linear transformation
of a single layer can also be described as a single matrix multiplication with
the weight matrix, followed by a vector addition with the bias vector and lastly
applying the activation function element-wise to the resulting vector.

7.4 Gradient-Based Optimization

The parameters θ of a neural network, sometimes referred to as weights of
the network1, have to be optimized to obtain a function f that accurately rep-
resents a target function f ∗. A neural network may have many parameters.
For example, recent advances in large language models, like the GPT family
of models (Brown et al. 2020), trained neural networks with many billions
of parameters. To train networks with such large amounts of parameters, an
efficient and automated process for the optimization of the network parameters
is required. Neural networks are complex non-linear functions, and there exists

1. Note that the parameters of feedforward neural networks include all weight matrices and bias
vectors across all layers.

“marl-book-main” — 2025/6/18 — 20:07 — page 170 — #199

170 Chapter 7

no general closed-form solution to find their optimal parameters with respect
to an optimization objective. Instead, non-convex gradient-based optimization
methods can be used. These methods randomly initialize and sequentially
update the parameters of a neural network to find parameters that improve the
neural network under the optimization objective. In the following sections, we
will explain the three key components for gradient-based optimization:

1. Loss function: an optimization objective that needs to be minimized and is
defined over the network parameters θ.

2. Gradient-based optimizer: the choice of gradient-based optimization
technique.

3. Backpropagation: a technique to efficiently compute gradients of the loss
function with respect to the network parameters θ.

The training loop of a neural network is illustrated in Figure 7.6, and the
following sections will explain each of the three components in detail.

7.4.1 Loss Function

Our objective during the optimization is to obtain parameters θ∗ such that the
loss function, denoted with L, is minimized:

θ∗ ∈ arg min
θ
L(θ) (7.7)

It is essential for this loss to be differentiable, because we need to compute
gradients of the loss function to enable gradient-based optimization of the pa-
rameters θ. The choice of loss function is dependent on the type of function the
neural network approximates and the available data used for the optimization.

To go back to our example of linear function approximation in Section 7.2,
the network may be optimized to approximate a state-value function V̂(s; θ)
for RL. This value function should accurately approximate the true state-value
function Vπ(s) for any state s under the current policy π. For this optimization
objective, we can define the loss as the mean squared error (MSE) of our
approximated state-value function and the true state-value function for a batch
of B states:

L(θ) =
1
B

B∑
k=1

(
Vπ(sk)− V̂(sk; θ)

)2
(7.8)

The used dataset consists of pairs of states and corresponding true state values,
D = {(sk, Vπ(sk))}|D|

k=1. For the optimization, B pairs are sampled from D to
compute the loss. Minimizing this loss will gradually update the parameters
θ of our neural network, representing V̂ , such that it approximates the true
state-value function more closely for all states in the batch. The MSE is a

“marl-book-main” — 2025/6/18 — 20:07 — page 171 — #200

Deep Learning 171

commonly used loss function in a setting where pairs of inputs and continuous
ground truth outputs, here states with their true state values, are available for
training. This setting of machine learning, in which models are trained from
data containing ground truth output labels, is referred to as supervised learning.
However, note that in RL we typically do not know the true state-value function
a priori. Fortunately, temporal-difference learning gives us a framework with
which we can formulate a loss for our value function to approximate discounted
state-value estimates using bootstrapped value estimates (Section 2.6):

L(θ) =
1
B

B∑
i=1

(
ri + γV̂(s′i ; θ)− V̂(si; θ)

)2
(7.9)

In this loss, we make use of a batch of experience of the agent consisting of state
s, reward r, and next state s′, respectively. Minimizing this loss will optimize
our network parameters θ, such that V̂ will gradually provide accurate state-
value estimates. Later in Chapter 8, we will discuss details of RL using neural
networks with concrete algorithms, examples, and performance comparisons.

7.4.2 Gradient Descent

A common optimization technique to update parameters in neural networks
is gradient descent. Gradient descent sequentially updates parameters θ by
following the negative gradients (hence “descent”) of the loss function with
respect to the parameters for given data. This technique is similar to the gradient
ascent in expected returns for policy learning we already saw in Section 6.4, with
the difference that we minimize a loss function rather than maximizing expected
returns. The gradient ∇θL(θ) is defined as the vector of partial derivatives for
each parameter θi ∈ θ

∇θL(θ) =
(
∂L(θ)
∂θ1

, …,
∂L(θ)
∂θd

)
(7.10)

and can be interpreted as the vector in the parameter space that points in the
direction where our loss function increases the fastest. As we want to minimize
the loss function, we can follow the negative gradient to update our parameters
in the direction of the steepest descent. In the simplest case of vanilla gradient
descent, network parameters are updated as

θ← θ−α∇θL(θ |D) (7.11)

“marl-book-main” — 2025/6/18 — 20:07 — page 172 — #201

172 Chapter 7

with learning rate α > 0 typically taking on small values between 10−5 and 10−2.
Vanilla gradient descent2 computes a single gradient for the entire training data
D to update the parameters. This application of gradient descent comes with
two main downsides. First, the training data D will often not fit into memory in
its entirety. This makes the computation of the gradient over the entire training
data difficult. Second, computing the gradient for the entire dataset for a single
update of the parameters is costly, and, hence, vanilla gradient descent is slow
to converge to a local optima.

Stochastic gradient descent (SGD) addresses these difficulties by following
the gradient for any individual sample d drawn from the training data:

θ← θ−α∇θL(θ | d)|d∼U (D) (7.12)

Samples are typically drawn uniformly at random from the training data D
(i.e., d∼U(D)), but other sampling strategies can be used as well. SGD is
significantly faster to compute as it only requires computing the gradient for a
single sample from the training data, but its updates exhibit high variance due
to the dependency on the sample drawn.

Mini-batch gradient descent lies in between these two extremes of vanilla
and stochastic gradient descent. Instead of using the entire dataset or individual
samples to compute gradients, mini-batch gradient descent uses, as the name
suggests, batches of samples from the training data to compute gradients:

θ← θ−α∇θL(θ |B)|B={di∼U (D)}B
i=1

(7.13)

Similar to SGD, samples for the batch are typically drawn uniformly at random.
The number of samples in a batch B used for each gradient computation, called
the batch size B, is chosen as a hyperparameter and offers a trade-off between
variance of gradients and computational cost. For small batch sizes, mini-batch
gradient descent approaches SGD with fast computation of gradients but high
variance. For larger batch sizes, mini-batch gradient descent approaches vanilla
gradient descent with slower computation of gradients but lower variance of
gradients and, hence, stable convergence. Common batch sizes for optimization
of neural networks lie between 32 and 1,028, but the batch size should always
be carefully chosen depending on the available data, computational resources,
neural network architecture, and loss function.

Figure 7.7(a) provides a comparison of vanilla gradient descent, SGD, and
mini-batch gradient descent with varying batch sizes for the optimization of
a polynomial function. In this example, we train a function approximator

2. Vanilla gradient descent is also sometimes referred to as batch gradient descent since it computes
a single gradient using the entire training data as a batch.

“marl-book-main” — 2025/6/18 — 20:07 — page 173 — #202

Deep Learning 173

0.5 0.0 0.5 1.0 1.5 2.0
a

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b

15.00

30.0045.00

60.00

Vanilla
Stochastic
Mini-batch B = 4
Mini-batch B = 32
Mini-batch B = 128
Optimal

(a) Gradient descent batch

0.5 0.0 0.5 1.0 1.5 2.0
a

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b

15.00

30.0045.00

60.00

Vanilla
Vanilla + default momentum = 0.9
Vanilla + Nesterov momentum = 0.9
Optimal

(b) Gradient descent momentum

Figure 7.7: Contour plots showing the optimization of a simple function ap-
proximation with two parameters, a and b, to fit a polynomial function with
gradient-based optimization. The concentric circles represent loss values given
by the mean-squared error. Each plotted dot represents the average estimate
for both parameters a and b after twenty gradient updates with the respective
optimizer. Figure (a) compares vanilla, stochastic, and mini-batch gradient
descent with various batch sizes, and (b) compares vanilla gradient descent with
and without momentum.

f (x; a, b) = ax + bx2 to approximate a target function f ∗(x; a∗ = 2, b∗ = 0.5). For
training, we generate a dataset D = {(x, f ∗(x))} by sampling 10,000 input val-
ues uniform-randomly from [−5, 5]. For all optimization, we use α = 5 · 10−4,
initial parameters a = b = 0, and train for 500 gradient updates. The results
indicate that the optimization with vanilla gradient descent is very stable, but it
is important to remember that each update with vanilla gradient descent is com-
putationally expensive, requiring on average 1.07ms per gradient computation
in our experiment. In contrast, stochastic gradient descent is computationally
cheap, each gradient computation only requiring 0.30ms on average, but its
optimization is less stable due to the high variance of its gradients. Mini-batch
gradient descent provides an appealing trade-off of both these approaches. Even
with a fairly small batch size of B = 32, we see that mini-batch gradient de-
scent approaches the stability of vanilla gradient descent at computational cost
comparable to stochastic gradient descent, requiring only 0.32 ms per gradient
computation. In the deep learning literature, mini-batch gradient descent is
sometimes also referred to as just SGD due to its approach of approximating

“marl-book-main” — 2025/6/18 — 20:07 — page 174 — #203

174 Chapter 7

the expected gradient of the entire training data using samples drawn from the
data.

Many gradient-based optimization techniques have been proposed to extend
mini-batch gradient descent. One common concept is the idea of momen-
tum (Polyak 1964; Nesterov 1983), which computes a moving average over past
gradients and adds it to the gradients to “accelerate” optimization. Figure 7.7(b)
visualizes the optimization for the same polynomial function as discussed before
using vanilla gradient descent with and without two types of momentum. We
can see significant improvements in the efficiency of gradient descent when
using momentum, with significantly fewer updates needed to obtain parameters
close to the ground truth parameters. As seen by the default momentum, the
speed-up of momentum is effective as long as gradients continue in a similar
direction, but it also increases the risk of “overshooting” minima of the loss
function. Nesterov momentum (Nesterov 1983) further improves upon this
and exhibits higher stability than traditional momentum. Several more recent
approaches follow the idea of dynamically adapting the learning rate during
optimization, which can be considered similar to momentum. Learning rate
adaptation has the main benefits of simplifying the process of choosing the
initial learning rate as a hyperparameter, making the optimization less sensitive
to the choice of the (initial) learning rate, and to speed-up the optimization
process. All gradient-based optimizers, which are commonly used to optimize
the parameters of neural networks, apply different learning rate adaptation
schemes (e.g., Duchi, Hazan, and Singer 2011; Hinton, Srivastava, and Swersky
2012; Zeiler 2012; Kingma and Ba 2015). None of these optimizers consistently
observed to perform better than the others, but the Adam optimizer (Kingma and
Ba 2015) has emerged as a common choice and is often applied as the default
optimizer in deep learning.3

7.4.3 Backpropagation

Gradient-based optimizers require the gradients∇θL(θ) of the loss with respect
to all parameters of the network. These gradients are needed to understand how
we should change each parameter to minimize the loss. To compute gradients
of the loss function with respect to all parameters in the network, that is, in-
cluding the parameters of every layer within the network, the backpropagation
algorithm (Rumelhart, Hinton, and Williams 1986) is used. This algorithm
considers the fact that a neural network computes a compositional function for
which the chain rule of derivatives can be applied. As a reminder, the chain rule

3. For a more detailed overview of gradient-based optimization techniques, we refer the interested
reader to Ruder (2016).

“marl-book-main” — 2025/6/18 — 20:07 — page 175 — #204

Deep Learning 175

states for y = g(x) and z = f (y) = f (g(x))

∇xz =
(
∂y
∂x

)⊤

∇yz (7.14)

with ∂y
∂x being the Jacobian matrix of function g. In words, the chain rule allows

us to compute the gradients of a compositional function with respect to the
inputs of the inner function as a multiplication of the Jacobian of the inner
function g and the gradient of the outer function with respect to its inputs.

As discussed in Section 7.3, feedforward neural networks are compositional
functions with each layer defining its own parameterized function consisting of
a non-linear activation function, matrix multiplication, and vector addition as
defined in Equation 7.6. By computing the inner gradients, ∇yz for each inner
operation computed throughout the network, the gradients of the parameters
can be efficiently computed with respect to its parameters for some given input
by traversing the network from its output layer to the input layer. Throughout
the network, the chain rule is applied to propagate gradients backwards until
the inputs are reached. Computing gradients with respect to every parameter
of the network in a single process backwards from the last to the first layer is
also referred to as a backward pass. This is in contrast to the forward pass
that sequentially passes outputs of layers forward to compute the output of
the neural network for some given input. All major deep learning frameworks
include implementations of the backpropagation algorithm using computational
techniques of automatic differentiation. Thanks to these techniques, the details
of the backpropagation algorithm are hidden away and computing gradients of
neural networks is as simple as calling a function in the respective framework.

7.5 Convolutional and Recurrent Neural Networks

Feedforward neural networks can be considered the backbone of deep learning
and are universally applicable to any type of data. Many more specialized
architectures exist which build on the idea of feedforward neural networks. The
most common specialized architectures also found in RL and MARL algorithms
are convolutional neural networks and recurrent neural networks. Both of these
architectures are designed for specific types of inputs and, hence, are suitable
for particular types of problems. Convolutional neural networks are specifically
constructed to process spatially structured data, in particular images. Recurrent
neural networks are designed to process sequences, in RL most commonly
histories of observations in partially observable environments.

“marl-book-main” — 2025/6/18 — 20:07 — page 176 — #205

176 Chapter 7

7.5.1 Learning from Images—Exploiting Spatial Relationships in Data

Feedforward neural networks can be used to process any inputs, but they are
not well suited for processing spatial data such as images for two primary
reasons. First, to process an image with a feedforward neural network, the image
representation would need to be flattened from a tensor x∈Rc×h×w, where c, h,
and w correspond to the number of color channels (many images are represented
with three color channels corresponding to the colors red, blue, and green),
height, and width of the image. The dimensionality of this flattened image vector
x̃∈Rc·h·w corresponds to the number of pixels in the image, multiplied by the
number of color channels. Processing such large input vectors with feedforward
neural networks would require the first layer to contain many parameters, which
makes the optimization difficult and is hence undesirable. For example, consider
a feedforward neural network which processes images of 128× 128 pixels with
RGB colors for three color channels. Representing images of this size, which is
significantly smaller than photos taken with any modern smartphone camera,
corresponds to vectors of dimensionality 128 · 128 · 3 = 49,152. With a small
number of neural units of 128 in the first layer, the network would have a total
of 6,291,584 parameters4 that need to be learned. While six million parameters
is not a large neural network in comparison to large language models, it appears
excessive and overly computationally expensive to require so many parameters
to process even small images.5

Secondly, images contain spatial relationships with pixels close to each other,
often corresponding to similar objects shown in the image. Feedforward neural
networks do not consider such spatial relationships and process every input
value individually.

Convolutional neural networks (CNNs) (Fukushima and Miyake 1982; Le-
Cun et al. 1989) directly make use of the spatial relationships within input data
such as images by processing patches of nearby pixels at a time. Small groups
of parameters called filters or kernels are “slid” over the image in a convolution
operation. For the convolution, each filter moves through the pixels in each row
of the image and encodes all pixel values it covers at a time. For each patch of
pixels the filter moves over, its parameters are multiplied with the corresponding
patch of pixels of the same size in a matrix multiplication to obtain a single
output value. The patch of input values involved in a single convolution are also

4. The weight matrix would be a 49,152× 128 dimensional matrix with a total of 6,291,456
parameters, and the bias vector would contain 128 parameters.
5. To process 4K RGB images with a resolution of 3,840× 2,160 instead of 128× 128 pixels, the
weight matrix in the first layer of a feedforward neural network alone would contain more than 3
billion parameters.

“marl-book-main” — 2025/6/18 — 20:07 — page 177 — #206

Deep Learning 177

Figure 7.8: An illustration of a convolutional neural network with a single 3× 3
kernel processing a 9× 9 input. First, the kernel is applied to the image with
padding one and a stride of two (kernel moving two pixels at a time) for a 5× 5
output. Second, a pooling operation is applied to 2× 2 groups of pixels with no
padding and a stride of one for a final output of 4× 4. Note that the image is
processed with only ten learned parameters (nine weights and a scalar bias).

referred to as the receptive field of the corresponding output value or neuron.
Formally, the convolution of a filter with parameters W ∈Rdw×dw over input
x∈Rdx×dx for output yi,j ∈R is defined as follows:

yi,j =
dw∑

a=1

dw∑
b=1

Wa,bxi+a−1,j+b−1 (7.15)

This operation is repeated until the filter has been moved over the entire
image. Note that each filter has one parameter for each cell, and the parameters
are reused in every convolution operation. This sharing of parameters across
multiple computations leads to significantly fewer parameters that need to be
optimized, in contrast to a fully-connected network layer, and makes use of
the spatial relationship of images with patches of nearby pixels being highly
correlated. Filters move across the input depending on the stride and padding.
The stride determines the number of pixels the filter moves at each slide, and
padding refers to an increase in the image size, typically by adding zero values
around its borders. These hyperparameters can be used to influence the dimen-
sionality of the convolution output. Following the convolution, a non-linear
activation function is applied element-wise to each cell of the output matrix.

To highlight the efficiency of CNNs, consider our previous example of
processing a 128× 128 RGB image. A CNN with sixteen filters of 5× 5

“marl-book-main” — 2025/6/18 — 20:07 — page 178 — #207

178 Chapter 7

dimensions has a total of 1,216 parameters6 to process an image with three
input channels. In contrast, a single-layered feedforward neural network with
128 hidden dimensions has over six million parameters to process the same
input. This is because the number of parameters of the CNN, unlike for the
feedforward neural network, is independent of the width and height of the input
image since the same filters are applied across the entire image. Instead, the
output dimension of a CNN depends on the dimensions of the input as well
as the stride and padding. For example, the CNN with sixteen filters of 5× 5
dimensions applied to a 128× 128× 3 image with stride 2 and padding 0 results
in a 63× 63× 16 output.

CNNs often apply multiple such convolution operations in a sequence using
varying sizes of filters. In between each convolution, it is common to addi-
tionally apply pooling operations. In these operations, patches of pixels are
aggregated together using operations such as taking the maximum value within
the patch, referred to as max-pooling, or taking the average. These pooling
operations in between convolutions further reduce the output dimensionality
throughout the convolutional neural networks and make the output of the net-
work insensitive to small local changes in the image. This effect is desirable
because the learned locally insensitive features might generalize better than
features that are associated with a particular location in the image.

Figure 7.8 shows a convolutional neural network with a single kernel pro-
cessing an input and applying pooling for aggregation. After processing spatial
inputs, such as images, with several layers of CNNs, it is common to fur-
ther process the obtained compact representations using feedforward neural
networks.

7.5.2 Learning from Sequences with Memory

Feedforward neural networks are ill-equipped to process sequential inputs.
For example in partially observable tasks, an RL agent is conditioned on its
history of observations (see Section 3.4). Conditioning a feedforward neural
network on such a history requires the entire sequence as input. Similar to
image inputs, processing a long sequence of observations with a feedforward
neural network can require many parameters. Additionally, observations within
a history will likely be correlated; thus, sharing parameters to process each
observation appears desirable, similarly to filters being used many times in a
convolutional neural network.

6. Each kernel has 5 · 5 · 3 = 75 parameters. Across all sixteen filters, this results in 1,200 parameters
in addition to the sixteen bias parameters.

“marl-book-main” — 2025/6/18 — 20:07 — page 179 — #208

Deep Learning 179

Figure 7.9: An illustration of a recurrent neural network that represents a
function f used to process a sequence of inputs x1, x2, …. At time step t, the
network takes both the current input xt and the previous hidden state ht−1 as
inputs to compute the new hidden state ht. An initial hidden state h0 is given to
the model at the first step, and then the hidden state is continually updated by
the recurrent neural network to process the input sequence.

Recurrent neural networks (RNNs) (Rumelhart, Hinton, and Williams 1986)
are neural networks specifically designed to process sequential data. Instead
of using long concatenated sequences of inputs, recurrent neural networks
sequentially process inputs and additionally condition the computation at each
step on a compact representation of the history of previous inputs. This compact
representation, also called the hidden state of the recurrent neural network, is
continually updated to encode more information as the sequence is processed
and serves as a form of memory. In this way, the same neural network and
computation can be applied at each time step, but its function continually adapts
as the sequence is processed and the hidden state changes. Formally, the hidden
state is given by the output of the network

ht = f (xt, ht−1; θ) (7.16)

with the initial hidden state h0 usually being initialized as a zero-valued vector.
In line with common notation in deep learning, we denote the hidden state of
a recurrent neural network with h, but, highlight that elsewhere in the book h
refers to the history of observations. Figure 7.9 illustrates the computational
graph for a recurrent neural network processing a sequence of inputs. Some
recurrent neural network architectures provide separate outputs for the updated
hidden state and the main output of the network.

Optimizing recurrent neural networks over long sequences is difficult, with
gradients often vanishing (becoming close to zero) or exploding (becoming very
large) due to the backpropagation repeatedly multiplying gradients and Jaco-
bians of the network parameters throughout the sequence. Various approaches
have been proposed to address this challenge, including skip connections (Lin
et al. 1996), which add connections between computations across multiple time

“marl-book-main” — 2025/6/18 — 20:07 — page 180 — #209

180 Chapter 7

steps, and leaky units (Mozer 1991; El Hihi and Bengio 1995), which allow
tuning the accumulation of previous time steps through linear self-connections.
However, the most commonly used and effective recurrent neural network
architectures are long short-term memory cells (LSTMs) (Hochreiter and
Schmidhuber 1997) and gated recurrent units (GRUs) (Cho et al. 2014). Both
approaches are based on the idea of allowing the recurrent neural network to
decide when to try to remember or discard accumulated information within the
hidden state.

7.6 Summary

In this chapter, we introduced deep learning and neural networks as a general
approach to learn approximate functions. The main concepts from this chapter
are the following:

• For tabular value functions and policies, updates only occur for visited states
and actions. However, it is infeasible to visit all states and actions many
times to learn accurate estimates in complex environments with large state
or action spaces. This necessitates function approximation to learn value
functions and policies that generalize across states and actions. Linear
function approximation approximates functions using a linear combination
of features. This approach is simple but also limited in the functions it can
represent and requires careful selection of features. Instead, deep learning
can approximate any function with neural networks given sufficient capacity.

• Feedforward neural network—also known as fully connected neural networks
or multi-layer perceptrons (MLPs)—are the foundational building block
of most neural networks. They are organized in layers with each layer
representing a parameterized linear transformation followed by a non-linear
activation function. An input is sequentially passed through the layers in the
network with the input to each layer being the output of the previous layer.
The output of the final layer is the output of the network.

• Neural networks are typically initialized with random parameters. To ap-
proximate a desirable function, their parameters are iteratively updated using
gradient-based optimization. The objective of this optimization is to mini-
mize a differentiable loss function. For each optimization step, the loss for a
batch of inputs is computed. Then, the gradients of the loss with respect to
the parameters of the neural network are computed using backpropagation.
The backpropagation algorithm efficiently computes the necessary gradients
by iteratively applying the chain rule of derivation. Lastly, the parameters of

“marl-book-main” — 2025/6/18 — 20:07 — page 181 — #210

Deep Learning 181

the neural network are updated with a gradient-based optimizers based on
the idea of gradient descent.

• Convolutional neural networks are an architecture of neural networks de-
signed to process high-dimensional inputs with spatial structure like images.
parameterized kernels are “slid” over the input in a convolutional operation
to process groups of neighboring inputs together. The same learned kernels
can process different parts of the input, thus sharing parameters and reducing
the number of parameters in the network. Additionally, convolutional neural
networks typically use pooling operations to reduce the dimensionality of the
input and make the network more robust to small translations of the input.
These operations are a form of inductive bias that allow convolutional neural
networks to effectively learn representations of high-dimensional inputs.

• Recurrent neural networks are a family of neural networks designed to pro-
cess sequences of inputs. A sequence is iteratively processed by the same
neural network that maintains a hidden state as a compact representation of
the history of previous inputs. Before processing each sequence, the hidden
state is initialized. At each step, the current hidden state and input of the
sequence is fed into the network to obtain the output for the current step
and a new hidden state. This process is repeated to compute the outputs
for each step of the sequence. The most common recurrent neural network
architectures are long short-term memory cells (LSTMs) and gated recurrent
units (GRUs), which allow the network to decide when to try to remember or
discard accumulated information within the hidden state.

In Chapter 8, we will build on the foundations of RL, introduced in Chapter 2,
and the newly introduced ideas of deep learning. We will introduce deep RL
algorithms that use neural networks to approximate value functions and policies,
as well as key challenges that need to be considered when applying deep learning
to RL. Chapter 9 will then extend these ideas to multi-agent RL.

“marl-book-main” — 2025/6/18 — 20:07 — page 182 — #211

“marl-book-main” — 2025/6/18 — 20:07 — page 183 — #212

8 Deep Reinforcement Learning

In Part I, we represented value functions with tables. After encountering a
particular state, only its corresponding value estimate, as given by its entry
in the table, is updated and all other value estimates remain unchanged. This
inability of tabular value functions to generalize, that is, to update its value
estimation for states similar but not identical to encountered states, renders
tabular MARL algorithms impractical for any but simple tasks with small
state and action spaces. In problems with large or continuous state spaces,
encountering any state multiple times is unlikely, and, thus, generalization is
essential to efficiently learn value functions and policies. Chapter 7 introduced
deep learning and neural networks with techniques to optimize the parameters
in neural networks. RL and MARL can leverage these powerful function
approximators to represent value functions that, unlike tabular value functions,
can generalize to previously unseen states.

Before we discuss how MARL algorithms can make use of neural networks
(Chapter 9), this chapter introduces the underlying techniques in the context
of single-agent RL. It naturally builds on the content of Chapters 2 and 7, and
it aims to answer the questions of how to effectively use neural networks to
approximate value functions and policies. We first describe how to use neural
networks to approximate value functions. As we will see, the integration of
deep learning into value functions for RL also introduces several challenges. In
particular, the previously encountered moving target problem (Section 5.4.1)
is further exacerbated when neural networks come into play, and neural net-
works tend to specialize to the most recent experiences. We will discuss these
difficulties, and how we can mitigate them. Then, we will discuss a second
family of RL algorithms—policy gradient algorithms—that directly learn a
policy represented as a parameterized function. We will introduce the theorem
underlying these algorithms, introduce fundamental policy gradient algorithms,
and discuss how to efficiently train these algorithms.

“marl-book-main” — 2025/6/18 — 20:07 — page 184 — #213

184 Chapter 8

8.1 Deep Value Function Approximation

Value functions are an essential component of most RL algorithms. This section
presents fundamental ideas on how to leverage neural networks to approximate
value functions. Perhaps surprisingly, introducing neural networks to represent
value functions in RL introduces several challenges that did not previously
occur with tabular value functions. In particular, extending common off-policy
RL algorithms such as Q-learning (Section 2.6) with neural networks requires
careful consideration. In this section, we piece-by-piece extend Q-learning, as
introduced for tabular RL, to the commonly used deep RL algorithm known
as deep Q-networks (DQN) (Mnih et al. 2015). DQN is the first and one of
the most frequently applied deep RL algorithms. Moreover, DQN serves as a
common building block for many single- and multi-agent RL algorithms, so we
will explain all its components in detail. We start from the Q-learning algorithm
we are already familiar with and present each extension with its formalization
and pseudocode, and compare the resulting algorithms in a single-agent variant
of the level-based foraging environment to study the impact of these extensions.
To formalize the algorithms for this chapter, we assume the environment is
represented by a fully observable MDP (Section 2.2). We will briefly discuss
the extension to partially observable games in Section 8.3.

8.1.1 Deep Q-Learning—What Can Go Wrong?

In tabular Q-learning, the agent maintains an action-value function Q in the
form of a table. After taking action at in state st at time step t, the agent receives
a reward rt and observes a new state st+1. Using this experience, the agent can
use the Q-learning update rule to update its action-value function as follows

Q(st, at)←Q(st, at) +α
(

rt + γmax
a′

Q(st+1, a′)−Q(st, at)
)

(8.1)

with α > 0 denoting the learning rate.
How can the tabular value function of Q-learning be substituted with a neural

network? In Chapter 7, we saw that in order to train a neural network, we need
to define the network architecture as well as the loss function, and choose a
gradient-based optimizer. The choice of an optimizer is important and may
significantly impact the learning process, as we discussed in Section 7.4, but
neural networks can be optimized with any gradient-based optimizer. Therefore,
we focus on defining the architecture and loss function. To this end, we define a
neural network Q to represent the action-value function for a deep version of Q-
learning, visualized in Figure 8.1. The network receives a state as its input and
outputs its estimated action value for each possible action. This architecture is

“marl-book-main” — 2025/6/18 — 20:07 — page 185 — #214

Deep Reinforcement Learning 185

Figure 8.1: The neural network architecture for action-value functions: the
network receives a state as its input, and outputs action-value estimates for
every possible (discrete) action.

computationally efficient by computing the action-value estimates for all actions
in one forward pass through the network. However, just as tabular Q-learning, it
limits deep Q-learning to environments with finite (discrete) action spaces. For
the loss function, which is to be minimized by updating parameters θ, we define
the squared error between the value function estimate and the target value yt at
step t using the same experience of a single transition as for tabular Q-learning:

L(θ) =
(
yt−Q(st, at; θ)

)2
(8.2)

It is important to keep in mind that state values for terminal states, after which
the episode ends, are always zero. This is because the agent cannot take any
further actions in terminal states and, therefore, cannot accumulate any more
rewards. In tabular algorithms, we already accounted for this property by
initializing the value function for all states to zero, since these values are never
updated for terminal states. However, a neural network might output non-zero
values for terminal states even if it was never explicitly updated for these states.
To ensure that the target value does not include a non-zero value for terminal
states, the target value is computed differently depending on whether st+1 is a
terminal state or not:1

yt =

{
rt if st+1 is terminal

rt + γmaxa′ Q(st+1, a′; θ) otherwise
(8.3)

Additionally, it is important to see that the loss function defined in Equa-
tion 8.2 contains the approximate value function twice: once for the current
estimate of the seen state and action, Q(st, at; θ), and once in the bootstrapped
target value (for non-terminal next states), maxa′ Q(st+1, a′; θ). This is relevant

1. In practice, this is typically achieved by masking out the maximum action value in the next state
with a value that takes on 0 if st+1 is terminal and 1 otherwise.

“marl-book-main” — 2025/6/18 — 20:07 — page 186 — #215

186 Chapter 8

Algorithm 10 Deep Q-learning

1: Initialize value network Q with random parameters θ
2: Repeat for every episode:
3: for time step t = 0, 1, 2, . . . do
4: Observe current state st

5: With probability ϵ: choose random action at ∈A
6: Otherwise: choose at ∈ arg maxa Q(st, a; θ)
7: Apply action at; observe reward rt and next state st+1

8: if st+1 is terminal then
9: Target yt← rt

10: else
11: Target yt← rt + γmaxa′ Q(st+1, a′; θ)

12: Loss L(θ)←
(
yt−Q(st, at; θ)

)2

13: Update parameters θ by minimizing the loss L(θ)

since computing the gradients of the loss with respect to the network param-
eters θ using backpropagation will compute backward passes through both
instances of the value function. However, in this case we want to update the
value estimate for the current state-action pair (st, at), and the bootstrapped
value estimate should only serve as a target value to optimize the main value
estimate Q(st, at; θ) toward. To avoid computing gradients through the boot-
strapped target value, we can stop any gradient flow backward through the
target.2 This detail has to be considered in all deep RL algorithms which use
bootstrapping to estimate target values. Pseudocode for this algorithm with
an ϵ-greedy exploration policy, which we will refer to as deep Q-learning, is
shown in Algorithm 10. In the following sections and chapters, we will denote
the parameters of neural networks that represent value functions with θ.

This simple extension of Q-learning suffers from two important issues. First,
the moving target problem is further exacerbated by representing the value
function with function approximation, since value estimates for all states and
actions continually change as the value function is updated. Second, the strong
correlation of consecutive samples used to update the value function leads to
undesirable overfitting of the network to the most recent experiences. The

2. Deep learning libraries such as PyTorch, Tensorflow, and Jax all provide functionality to restrict
the gradient computation to specific components within the loss. This is an implementation detail,
even though an important one, and is not essential to understand the core components within the
following algorithms.

“marl-book-main” — 2025/6/18 — 20:07 — page 187 — #216

Deep Reinforcement Learning 187

following two sections will focus on these challenges and how to address them
for deep reinforcement learning.

8.1.2 Moving Target Problem

In Section 5.4.1, we have already seen that the learning of value functions
in RL is challenging due to non-stationarity . This non-stationarity is caused
by two factors. First, the policy of the agent is changing throughout training.
Second, the target estimates are computed with bootstrapped value estimates of
the next state, which change as the value function is trained. This challenge,
which we also refer to as the moving target problem, is further exacerbated in
deep RL. In contrast to tabular value functions, value functions with function
approximation, such as neural networks, generalize their value estimates across
inputs. This generalization is essential in order to apply value functions to
complex environments, but it also introduces a difficulty in that updating the
value estimate for a single state may also change the value estimate in all other
states. This can cause the bootstrapped target estimate to change significantly
more rapidly than for tabular value functions, which can render optimization
unstable.

This problem is particularly prominent in algorithms that combine off-policy
learning3 with function approximation and bootstrapped targets. The presence
of this so-called deadly triad of RL (Sutton and Barto 2018; van Hasselt et
al. 2018) can lead to unstable and diverging value estimates. To see why the
combination of these three concepts can lead to instability and divergence during
learning, we can consider the deep Q-learning algorithm in Section 8.1.1 that
contains all these components. For this algorithm, we train an action-value
function Q represented by a neural network as a form of function approximation.
To update the value function, we collect off-policy experiences, for example,
using an ϵ-greedy policy. For a collected experience tuple (st, at, rt, st+1), the
bootstrapped target value is computed using maxa′ Q(st+1, a′; θ). The subsequent
update to the parameters θ of the value function might increase the value
estimate for (st+1, a′). This increase in the target action-value estimate can
be problematic, since the behavior policy might never take action a′ in state
st+1. Therefore, the value estimate for this pair will only be indirectly updated
through changes in θ, which can cause increasing value estimates without any
chance for correction of this potential overestimation. As a consequence, the
value estimate for (st+1, a′) might diverge. Furthermore, this divergence can

3. As a reminder, an algorithm is called off-policy when the experience used to update its policy is
gathered by following a behavior policy different from the policy that is being learned.

“marl-book-main” — 2025/6/18 — 20:07 — page 188 — #217

188 Chapter 8

propagate to other value estimates that use diverging values as part of their
bootstrapped targets.

It is important to see that the deadly triad requires all three components. With-
out function approximation, the target value estimates would never be updated
and overestimated without actively visiting these states. Without bootstrapped
target values, value estimates could only be diverging for state-action pairs
that are never visited (due to the absence of correction), and such divergence
would be without consequence for other value estimates. If we used on-policy
experience samples instead of off-policy samples, the bootstrapped target values
would be computed using states and actions that are also visited by the current
policy, and, thus, overestimation of target values can be corrected once these
states and actions are visited and their value estimates are updated.

To reduce the instability of training caused by the moving target problem and
reduce the risk of diverging value estimates, we can equip the agent with an
additional network. This so-called target network with parameters θ uses the
same architecture as the main value function and is initialized with the same
parameters. The target network can then be used instead of the main value
function to compute bootstrapped target values:

yt =


rt if st+1 is terminal

rt + γmaxa′ Q(st+1, a′; θ)︸ ︷︷ ︸
target network

otherwise (8.4)

These target values can be used to compute the same loss of deep Q-learning
(Equation 8.2).

Instead of optimizing the target network with gradient descent, the parameters
of the target network are periodically updated by copying the current parameters
of the main value function network to the target network, that is, θ← θ . This
process ensures that the bootstrapped target values are not too far from the
estimates of the main value function, but remain unchanged for a fixed number
of updates and thereby increase the stability of target values. Furthermore,
we reduce the risk of diverging value estimates caused by the deadly triad by
decoupling the network used to compute bootstrapped value estimates for the
target from the main value function. Pseudocode for deep Q-learning with target
networks is given in Algorithm 11.

8.1.3 Breaking Correlations

The second problem of naive deep Q-learning is the correlation of consecutive
experiences. In many paradigms of machine learning, it is generally assumed
that the data used to train the function approximation are independent of each

“marl-book-main” — 2025/6/18 — 20:07 — page 189 — #218

Deep Reinforcement Learning 189

Algorithm 11 Deep Q-learning with target networks

1: Initialize value network Q with random parameters θ
2: Initialize target network with parameters θ = θ
3: Repeat for every episode:
4: for time step t = 0, 1, 2, . . . do
5: Observe current state st

6: With probability ϵ: choose random action at ∈A
7: Otherwise: choose at ∈ arg maxa Q(st, a; θ)
8: Apply action at; observe reward rt and next state st+1

9: if st+1 is terminal then
10: Target yt← rt

11: else
12: Target yt← rt + γmaxa′ Q(st+1, a′; θ)

13: Loss L(θ)←
(
yt−Q(st, at; θ)

)2

14: Update parameters θ by minimizing the loss L(θ)
15: In a set interval, update target network parameters θ

other and identically distributed, or “i.i.d. data” in short. This assumption
guarantees that, firstly, there are no correlations of individual samples within
the training data, and secondly, that all data points are sampled from the same
training distribution. Both of these components of the i.i.d. assumption are typi-
cally violated in RL. For the former, individual samples of experiences, given
by tuples of state, action, reward, and next state, are clearly not independent
and highly correlated. This correlation is obvious given the formalization of
an environment as an MDP. The experience at time step t is directly dependent
on and, therefore, not independent from the experience at time step t− 1, with
st+1 and rt being determined by the transition function conditioned on st and at.
Regarding the assumption of data points being sampled from the same training
distribution, the distribution of encountered experiences in RL depends on the
currently executed policy. Therefore, changes in the policy also cause changes
in the distribution of experiences.

But why are we concerned about these correlations? What impact do these
correlations have on the training of the agent using deep value functions?
Consider the example illustrated in Figure 8.2, in which an agent controls
a spaceship. For several time steps, the agent receives similar sequences of
experiences in which it approaches the goal location from the right direction
(Section 8.1.3). The agent sequentially updates its value function parameters

“marl-book-main” — 2025/6/18 — 20:07 — page 190 — #219

190 Chapter 8

· · ·
Figure 8.2: An illustration of the correlations of consecutive experiences in
an environment where the agent controls a spaceship to land. In the first two
episodes, the agent approaches the goal location from the right side. In the third
episode, the agent has to approach the goal location from the left side and, thus,
experiences very different states than in the previous episodes.

using these experiences, which may lead to the agent becoming specialized for
these particular, recent experiences of approaching the goal location from the
right side. Suppose that, after several such episodes, the agent has to approach
the goal from the left side (Section 8.1.3), but throughout the previous updates
has learned a value function that is specialized to states where the spaceship is
located to the right of the goal location. This specialized value function may
provide inaccurate value estimates for states where the spaceship is located to
the left of the goal location and, thus, may fail to successfully land from this
side. Moreover, updating the value function with the experience samples from
this most recent episode might lead to the agent forgetting how to approach
the goal from the right side. This phenomenon is referred to as catastrophic
forgetting and is a fundamental challenge of deep learning. This challenge is
further exacerbated in RL since changes in the policy will lead to changes in the
data distribution encountered by the agent, and changes in the data distribution
might change the optimal policy. This dependence can lead to oscillating or
even diverging policies.

To address these issues, we can randomize the experience samples used
to train the agent. Instead of using the sequential experiences as the agent
receives them to update the value function, experience samples are collected
in a so-called replay buffer D. For training of the value function, a batch of
experiences B is sampled uniformly at random from the replay buffer, B∼U (D).
This sampling has two additional benefits for the optimization of the value
function: (1) experiences can be reused multiple times for training, which can
improve sample efficiency, and (2) by computing the value loss over batches
of experiences rather than for an individual experience sample, we can obtain
a more stable gradient for the network optimization with lower variance. This
effect is similar to the benefits of mini-batch gradient descent over stochastic

“marl-book-main” — 2025/6/18 — 20:07 — page 191 — #220

Deep Reinforcement Learning 191

Algorithm 12 Deep Q-networks (DQN)

1: Initialize value network Q with random parameters θ
2: Initialize target network with parameters θ = θ
3: Initialize an empty replay buffer D = {}
4: Repeat for every episode:
5: for time step t = 0, 1, 2, . . . do
6: Observe current state st

7: With probability ϵ: choose random action at ∈A
8: Otherwise: choose at ∈ arg maxa Q(st, a; θ)
9: Apply action at; observe reward rt and next state st+1

10: Store transition (st, at, rt, st+1) in replay buffer D
11: Sample random mini-batch of B transitions (sk, ak, rk, sk+1) from D
12: if sk+1 is terminal then
13: Targets yk← rk

14: else
15: Targets yk← rk + γmaxa′ Q(sk+1, a′; θ)

16: Loss L(θ)← 1
B

∑B
k=1

(
yk−Q(sk, ak; θ)

)2

17: Update parameters θ by minimizing the loss L(θ)
18: In a set interval, update target network parameters θ

gradient descent discussed in Section 7.4.2. During training, the mean squared
error loss is computed over the batch and minimized to update the parameters
of the value function

L(θ) =
1
B

∑
(sk ,ak ,rk ,s′k)∈B

(
yk−Q(st, at; θ)

)2
(8.5)

with the targets of the kth experience sample yk being computed as given in Equa-
tion 8.3. Formally, the replay buffer can be denoted as a set D = {(st, at, rt, st+1)}
of experience samples. Typically, the replay buffer is implemented with a fixed
capacity as a first-in-first-out queue, that is, once the buffer is filled to its ca-
pacity with experience samples, the oldest experiences are continually replaced
as new experience samples are added to the buffer. It is important to note that
experiences within the buffer have been generated using the policy of the agent
at earlier time steps during training. Therefore, these experiences are off-policy
and, thus, a replay buffer can only be used to train off-policy RL algorithms
such as algorithms based on Q-learning.

“marl-book-main” — 2025/6/18 — 20:07 — page 192 — #221

192 Chapter 8

(a) Single-agent level-based
foraging environment

0 20000 40000 60000 80000 100000
Environment time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

Deep Q-Learning
Deep Q-Learning + target network
Deep Q-Learning + replay buffer
DQN

(b) Learning curves

Figure 8.3: (a) A simplified single-agent variant of the level-based foraging
environment (Figure 1.2). The agent moves within the grid-world and has
to collect a single, randomly located item. (b) Learning curves for deep Q-
learning, deep Q-learning with target networks, deep Q-learning with a replay
buffer, and the full DQN algorithm in the single-agent level-based foraging
environment. We train all algorithms for 100,000 time steps and in frequent
intervals compute the average evaluation returns of the agent over ten episodes
using a near-greedy policy (ϵ= 0.05). Visualized learning curves and shading
correspond to the mean and standard deviation across discounted evaluation
returns across five runs with different random seeds. To ensure consistency,
we use identical hyperparameters: discount factor γ = 0.99, learning rate α=
3 · 10−4, ϵ is decayed from 1.0 to 0.05 over half of training (50,000 time steps)
and then kept constant, batch size B = 512 and buffer capacity is set to 10,000
experience tuples for algorithms with a replay buffer, and target networks are
updated every one hundred time steps where applied.

8.1.4 Putting It All Together: Deep Q-Networks

These ideas bring us to one of the first and one of the most influential deep RL
algorithms: deep Q-networks (DQN) (Mnih et al. 2015). DQN extends tabular
Q-learning by introducing a neural network to approximate the action-value
function, as shown in Figure 8.1. To address the challenges of moving target
values and correlation of consecutive samples, DQN uses a target network and
replay buffer, as discussed in Sections 8.1.2 and 8.1.3. All these ideas together
define the DQN algorithm, as shown in Algorithm 12. The loss function is
given as in Equation 8.5 with targets computed using a target network as in
Equation 8.4.

“marl-book-main” — 2025/6/18 — 20:07 — page 193 — #222

Deep Reinforcement Learning 193

To see the impact of both the target network and replay buffer on the
learning of the agent, we show the learning curves of four algorithms in the
single-agent level-based foraging environment in Figure 8.3: Deep Q-learning
(Algorithm 10), deep Q-learning with target networks, deep Q-learning with
a replay buffer, and the full DQN algorithm with a replay buffer and target
networks (Algorithm 12). In this environment, visualized in Figure 8.3(a), the
agent moves within an 8× 8 grid-world to collect a single item.4 The agent
and the item are randomly placed at the beginning of each episode. To collect
the item, and receive a reward of +1, the agent has to move next to the item
and select its collect action. For any other action, the agent receives a reward
of 0. We see that training the agent with deep Q-learning leads to a slow and
unstable increase in evaluation returns. Adding target networks leads to no
notable improvement in performance. Training the agent with deep Q-learning
and batches sampled from a replay buffer slightly increases evaluation returns
in some runs, but performance remains noisy across runs. Finally, training the
agent with the full DQN algorithm, that is, using target networks and a replay
buffer, leads to a stable and quick increase in performance and convergence to
near-optimal discounted returns.

This experiment demonstrates that, in isolation, neither the addition of target
networks nor of a replay buffer are sufficient to train the agent with deep
Q-learning in this environment. Adding a target network reduces stability
issues caused by the moving target problem, but the agent still receives highly
correlated samples and is unable to train its value function to generalize over all
initial positions of the agent and item, which are randomized at the beginning
of each episode. Training the agent with a replay buffer addresses the issue
of correlated experiences, but without target networks suffers from unstable
optimization due to the moving target problem. Only the combination of both
of these ideas in the DQN algorithm leads to a stable learning process.

8.1.5 Beyond Deep Q-Networks

Despite the improved stability obtained by using target networks and a replay
buffer, the DQN algorithm still suffers from several issues. Similar to the
underlying tabular Q-learning algorithm, DQN is prone to overestimation of
action values (Thrun and Schwartz 1993; van Hasselt 2010; van Hasselt, Guez,
and Silver 2016). One key reason for the overestimation is that the target
computation uses the maximum action-value estimate over all actions in the

4. In contrast to the multi-agent level-based foraging environment introduced in Figure 1.2, the
agent and item have no levels and collection will always be successful as long as the agent is located
next to the item.

“marl-book-main” — 2025/6/18 — 20:07 — page 194 — #223

194 Chapter 8

next state, maxa′ Q(st+1, a′; θ). This maximum value estimate is likely to select
an action value that is overestimated. By decoupling the selection of the action
from the estimation of its value, the overestimation can be reduced. For DQN,
this can be achieved by computing the target value with the greedy action in the
next state being determined by the main value function, arg maxa′ Q(st+1, a′; θ),
and using the target network, Q(st+1, ·; θ), to evaluate its value:

yt =

{
rt if st+1 is terminal

rt + γQ(st+1, arg maxa′ Q(st+1, a′; θ); θ) otherwise
(8.6)

Decoupling the greedy action selection and the value estimation in this way
reduces the risk of overestimation, since the main value network and target
network are unlikely to overestimate the action value of the same actions. For
example, even if the main value network overestimates the value for action a′

and, thus, identifies this action as the greedy action, the target value will not
be overestimated unless the target network overestimates the action value for
action a′ as well. Likewise, if the target network overestimates the value of
action a′, this overestimation does not affect the target value unless the main
value network also identifies action a′ as the greedy action. By substituting the
previous target computation from Equation 8.4 in Algorithm 12 with this new
target, we obtain the double deep Q-networks (DDQN) algorithm (van Hasselt,
Guez, and Silver 2016). Given its simplicity and effectiveness, the DDQN target
computation is commonly found in many deep RL and MARL algorithms that
are based on DQN.

Besides DDQN, many extensions to the original DQN algorithm have been
proposed to improve its performance and stability. Schaul et al. (2016) argue
that not all experiences in the replay buffer are equally important. Therefore,
instead of sampling experiences uniform-randomly from the replay buffer, they
propose to prioritize experiences with larger temporal-difference errors during
the sampling process. Fortunato et al. (2018) propose to add parameterized and
learned noise to the weights of the neural network to encourage exploration.
Wang et al. (2016) show that decoupling the action-value function into a state-
value function and an advantage function can simplify the learning process
and improve generalization of action-value estimates. Instead of learning a
single point estimate for each action value, Bellemare, Dabney, and Munos
(2017) propose to learn a distribution over possible values for each action. By
combining many of these extensions, we obtain a more advanced version of the
DQN algorithm, called Rainbow, which has been shown to exhibit significantly
higher performance than DQN across Atari games (Hessel et al. 2018).

“marl-book-main” — 2025/6/18 — 20:07 — page 195 — #224

Deep Reinforcement Learning 195

8.2 Policy Gradient Algorithms

So far in this chapter, we have discussed value-based RL algorithms. These
algorithms learn a parameterized value function, represented by a neural net-
work, and the agent follows a policy that is directly derived from this value
function. As we will see, it can be desirable to directly learn a policy as a sepa-
rate parameterized function. Such a parameterized policy can be represented by
any function approximation technique, most commonly using linear function
approximation (see Section 7.2) or deep learning. In the RL literature, these
algorithms are referred to as policy gradient algorithms because they compute
gradients with respect to the parameters of their policy to update the learned
policy. In Section 6.4, we have already seen simple parameterized policies for
MARL that are updated using gradient-based techniques. In this section, we
will discuss more advanced policy gradient algorithms for single-agent RL that
make use of neural networks to represent the policy.

8.2.1 Advantages of Learning a Policy

Directly representing the policy of an RL agent has two key advantages. First,
in environments with discrete actions, a parameterized policy can represent any
probabilistic policy, which leads to significantly more flexibility in its action
selection compared to value-based RL algorithms. A value-based RL agent
following an ϵ-greedy policy5 is more restricted in its policy representation
depending on the current value of ϵ and its greedy action. For example, assume
an action-value function where the first action has the largest value estimate in
a given state. The ϵ-greedy policies derived from this action-value function are
limited to selecting the greedy action a1 with probability 1− ϵ+ ϵ

|A| and ϵ
|A| for

all other actions. Figure 8.4(a) visualizes these ϵ-greedy policies for varying
values of ϵ. In contrast, a policy gradient algorithm learns a parameterized
policy that can represent arbitrary policies (Figure 8.4(b)).

This expressiveness can be important in partially observable and multi-agent
games, where the only optimal policy might be probabilistic. For example,
in the game of Rock-Paper-Scissors, the unique Nash equilibrium (and the
minimax solution) is for both agents to choose each of their three actions with
uniform probability (see Sections 4.3 and 4.4 for a refresher on these solution

5. We note that there are other policy representations for value-based RL algorithms than ϵ-greedy
policies. For example, agents can follow a Boltzmann policy, which is similar to a softmax
policy over the action-value estimates with a decaying temperature parameter, or agents can follow
a deterministic exploration policy given with upper confidence bounds (UCB) from the bandit
literature. However, all these policies of value-based algorithms are applied for exploration and
converge to a deterministic policy for evaluation.

“marl-book-main” — 2025/6/18 — 20:07 — page 196 — #225

196 Chapter 8

a1 a2 a3
Actions

0.0

0.2

0.4

0.6

0.8

1.0
π

(·
|s

)

Greedy (= 0)
-greedy (= 0.1)
-greedy (= 0.5)
-greedy (= 1.0)

(a) ϵ-greedy policies

a1 a2 a3
Actions

0.0

0.2

0.4

0.6

0.8

1.0

π
(·
|s

)

Probabilistic [1/3, 1/3, 1/3]
Probabilistic [0.8, 0.1, 0.1]
Probabilistic [0.1, 0.0, 0.9]
Probabilistic [0.4, 0.1, 0.5]

(b) Probabilistic policies

Figure 8.4: An illustration of the varying flexibility of (a) ϵ-greedy policies and
(b) softmax policies (Equation 8.7) for a task with three discrete actions.

concepts). An ϵ-greedy policy would only be able to represent the equilibrium
for ϵ = 1, but typically we want to decay ϵ throughout training to converge to the
greedy policy. This would prevent the agents from being able to represent the
equilibrium policy in this game. In contrast, a parameterized probabilistic policy
can always be used to represent the policy with uniform action probabilities.

Second, by representing a policy as a separate learnable function, we can rep-
resent policies for continuous action spaces. In environments with continuous
actions, an agent selects a single or several continuous values (typically within
a certain interval) as its actions. For example, the agent might control (real or
simulated) robots and vehicles, with continuous actions corresponding to the
amount of torque applied by an actuator, rotational angles of a steering wheel,
or the force applied to a brake pedal. All these actions are most naturally rep-
resented by continuous actions within a predefined interval of possible values.
The value-based RL algorithms introduced in Section 8.1 are not applicable to
such settings, because their neural network architecture has one output value
for every possible (discrete) action corresponding to the action-value estimate
of that particular action. However, there are an infinite number of continuous
actions, and, thus, the same architecture cannot be applied. In contrast, we
can learn parameterized policies over continuous actions. For example, we
can represent a parameterized policy over continuous actions with a Gaussian
distribution, in which the mean µ and standard deviation σ of a continuous
action are computed by parameterized functions. In this book, we focus on
policy gradient algorithms for discrete action spaces, which are commonly used
in the MARL literature.

To represent a probabilistic policy for discrete action spaces using neural
networks, we can use an identical architecture as for action-value functions

“marl-book-main” — 2025/6/18 — 20:07 — page 197 — #226

Deep Reinforcement Learning 197

(Figure 8.1). The policy network receives a state as input and outputs a scalar
output for every action, l(s, a), to represent the preference of the policy to select
action a in state s. These preferences are transformed into a probability distribu-
tion using the softmax function, defined as the exponential of the preferences
divided by the sum of the exponentials of all preferences:

π(a | s;ϕ) =
el(s,a;ϕ)∑

a′∈A el(s,a′;ϕ) (8.7)

In the remainder of this book, we will always denote the parameters of a param-
eterized value function with θ and denote the parameters of a parameterized
policy with ϕ.

8.2.2 Policy Gradient Theorem

To train a parameterized policy for policy gradient RL algorithms, we want to
be able to use the same gradient-based optimization techniques introduced in
Section 7.4. For gradient-based optimization, we require the representation of
the policy to be differentiable. Besides a differentiable function, we need to
specify the loss function to compute gradients to update the parameters of the
policy. Generally, minimizing the loss function should correspond to increasing
the “quality” of the policy. But what constitutes a “good” policy? One sensible
metric for the quality of a policy in episodic environments is expected episodic
returns (Section 2.3). The expected returns in any given state under a given
policy are represented by the value of the policy for that particular state, Vπ(s),
or the action value Qπ(s, a). However, optimizing the policy to maximize such
values can be challenging since changes of the policy affect not just the action
selection, and thus the rewards received by the agent, but also the distribution of
states encountered by the agent. The action selection and changes in expected
returns can be captured by the returns of experienced episodes, but the state
distribution directly depends on the transition dynamics of the environment,
which is generally assumed to be unknown.

The policy gradient theorem (Sutton and Barto 2018) formulates a solution to
these challenges and provides a theoretically founded expression for the gradient
of the performance of a parameterized policy with respect to the parameters of
the policy. The policy gradient for episodic environments is given by

∇ϕJ(ϕ)∝
∑
s∈S

Pr(s |π)
∑
a∈A

Qπ(s, a)∇ϕπ(a | s;ϕ) (8.8)

where J represents the objective function we aim to maximize. This function
is defined over the parameters ϕ of parameterized policy π, and measures the
quality of the policy as given by the values Qπ(s, a) under policy π for actions

“marl-book-main” — 2025/6/18 — 20:07 — page 198 — #227

198 Chapter 8

and states under their respective probabilities. The probabilities of actions are
given by the policy π, and the probability of being in state s at any time step
while following policy π is given by the state distribution Pr(s |π), also called
the on-policy distribution of policy π. To derive this distribution, we first define
the probability of being in state s at time step t when following policy π:

Pr(st = s |π) =

{
µ(s) if t = 0∑

s′ Pr(st−1 = s′ |π)
∑

a π(a | s′)T (s | s′, a) if t > 0

Based on these probabilities, we can define a quantity ρ that can be thought of
as the time steps policy π is expected to spend in state s:

ρ(s |π) =
∞∑
t=0

γtPr(st = s |π)

=µ(s) +
∞∑
t=1

γt
∑

s′
Pr(st−1 = s′ |π)

∑
a

π(a | s′)T (s | s′, a)

=µ(s) + γ
∑

s′
ρ(s′ |π)

∑
a

π(a | s′)T (s | s′, a)

The discount factor γ is used in ρ following the interpretation that the environ-
ment terminates at any time step with a probability of (1− γ) (as discussed in
Section 2.3). Finally, we obtain the state distribution of policy π by normalizing
the quantity ρ over all states:

Pr(s |π) =
ρ(s |π)∑
s′ ρ(s′ |π)

As we can see, the policy gradient relies on state probabilities under the policy
π. Obtaining these probabilities for all states is costly, but we can approximate
them by using policy π to interact with the environment and, thereby, sampling
states corresponding to their probability under policy π. In this way, the policy
gradient does not depend on unknown information about the environment, such
as the transition function and reward function, so we can use it in RL where we
typically assume these functions to be unknown.

We note that the policy gradient theorem assumes that the state distribution
and action values are given under the currently optimized policy π. To make this
assumption more apparent, we can write the policy gradient as an expectation
with respect to the state distribution Pr(s |π) under the current policy and the

“marl-book-main” — 2025/6/18 — 20:07 — page 199 — #228

Deep Reinforcement Learning 199

probability of actions being selected by the policy:

∇ϕJ(ϕ)∝
∑
s∈S

Pr(s |π)
∑
a∈A

Qπ(s, a)∇ϕπ(a | s;ϕ) (8.9)

=Es∼Pr(·|π)

[∑
a∈A

Qπ(s, a)∇ϕπ(a | s;ϕ)

]
(8.10)

=Es∼Pr(·|π)

[∑
a∈A

π(a | s;ϕ)Qπ(s, a)
∇ϕπ(a | s;ϕ)
π(a | s;ϕ)

]
(8.11)

=Es∼Pr(·|π),a∼π(·|s;ϕ)

[
Qπ(s, a)

∇ϕπ(a | s;ϕ)
π(a | s;ϕ)

]
(8.12)

=Es∼Pr(·|π),a∼π(·|s;ϕ)
[
Qπ(s, a)∇ϕ logπ(a | s;ϕ)

]
(8.13)

We denote the natural logarithm with log unless stated otherwise. We can see
that the state distribution and action selection are both induced by the policy and,
thus, fall within the expectation in Equations 8.10 and 8.12, respectively. In the
end, we obtain a simple expression (Equation 8.13) within the expectation under
the current policy to express the gradients of the policy parameters toward policy
improvement. This expectation also clearly illustrates the restriction that follows
from the policy gradient theorem: the optimization of the parameterized policy
is limited to on-policy data, that is, the data used to optimize π is generated
by the policy π itself (Section 2.6). Therefore, data collected by interacting
with the environment using any different policy π′, in particular also including
previous policies obtained during the training of π, can not be used to update
π following the policy gradient theorem. The application of a replay buffer,
as seen in Section 8.1.3, would constitute such a violation of the assumption,
because it contains experiences generated by “older and outdated” versions
of our currently optimized policy. Therefore, a replay buffer cannot be used
to update a policy following the policy gradient theorem. Furthermore, we
have to approximate the expected returns under our current policy denoted with
Qπ. Most algorithms that train an action-value function, such as DQN and
other algorithms based on the classical Q-learning algorithm, do not satisfy
this requirement. Instead, they directly approximate the optimal value function,
that is, the expected returns under the optimal policy, by following the Bellman
optimality equation (Section 2.6).

Looking at Equation 8.12 of the policy gradient theorem further provides an
intuitive interpretation for policy improvement:

∇ϕJ(ϕ) =Es∼Pr(·|π),a∼π(·|s;ϕ)

[
Qπ(s, a)

∇ϕπ(a | s;ϕ)
π(a | s;ϕ)

]
(8.14)

“marl-book-main” — 2025/6/18 — 20:07 — page 200 — #229

200 Chapter 8

The numerator of the fraction within the expression, ∇ϕπ(a | s;ϕ), represents
the gradient of the policy pointing in the direction in parameter space that most
increases the probability of repeating action a on future visits to state s. This
gradient is weighted by the quality of the action a in state s as given by the
value or expected returns of the policy Qπ(s, a). This weighting ensures that the
policy optimizes its parameters such that actions with higher expected returns
become more probable than actions with lower expected returns. Lastly, the
denominator of the fraction, π(a | s;ϕ), can be thought of as a normalizing factor
to correct for the data distribution induced by the policy. The policy π might
take some actions with significantly higher probabilities than others, and, hence,
more updates might be done to the policy parameters to increase the probability
of more likely actions. To account for this factor, the policy gradient needs to
be normalized by the inverse of the action probability under the policy.

8.2.3 REINFORCE: Monte Carlo Policy Gradient

The policy gradient theorem defines the gradient to update a parameterized
policy to gradually increase its expected returns. To use the theorem to compute
gradients and update the parameters of the policy, we need to either approximate
the derived expectation (Equation 8.13) or obtain samples from it. Monte Carlo
estimation is one possible sampling method, which uses on-policy samples of
episodic returns to approximate the expected returns of the policy. By instan-
tiating the expected returns in the policy gradient theorem with Monte Carlo
samples, we obtain the REINFORCE algorithm (Williams 1992) that minimizes
the following loss for the episodic history {s0, a0, r0, …, sT−1, aT−1, rT−1, sT}:

L(ϕ) =− 1
T

T−1∑
t=0

(
T−1∑
τ=t

γτ−trτ
)

logπ(at | st;ϕ) (8.15)

=− 1
T

T−1∑
t=0

(
T−1∑
τ=t

γτ−tR(sτ , aτ , sτ+1)

)
logπ(at | st;ϕ) (8.16)

Given that the policy gradient theorem provides a gradient in the direction of
policies with higher expected returns and we want to define a to-be-minimized
loss, this loss corresponds to the negative policy gradient (Equation 8.13)
with Monte Carlo estimates of the expected returns under the current policy π.
During training, the REINFORCE algorithm first collects an episodic history by
using its current policy π. After an episode has terminated, the return estimate
and the policy gradient are computed as given by Equation 8.16. We provide
pseudocode for the REINFORCE algorithm in Algorithm 13.

Unfortunately, Monte Carlo return estimates have high variance, which leads
to high variance of gradients and unstable training in REINFORCE. This high

“marl-book-main” — 2025/6/18 — 20:07 — page 201 — #230

Deep Reinforcement Learning 201

Algorithm 13 REINFORCE

1: Initialize policy network π with random parameters ϕ
2: Repeat for every episode:
3: for time step t = 0, 1, 2, . . . , T − 1 do
4: Observe current state st

5: Sample action at∼π(· | st;ϕ)
6: Apply action at; observe reward rt and next state st+1

7: Loss L(ϕ)←− 1
T

∑T−1
t=0

(∑T−1
τ=t γ

τ−trτ
)

logπ(at | st;ϕ)
8: Update parameters ϕ by minimizing the loss L(ϕ)

variance arises due to the returns of each episode depending on all states and
actions encountered within the episode. Both states and actions are samples of a
probabilistic transition function and policy, respectively. To reduce the variance
of return estimates, we can subtract a baseline from the return estimates. For
any baseline b(s) defined over the state s, the gradient derived from the policy
gradient theorem (Equation 8.13) remains unchanged in expectation. Therefore,
even when subtracting a baseline, we still optimize the parameters of the policy
to maximize its expected returns, but we reduce the variance of the computed
gradients. For the following derivation, we will use Eπ[…] to abbreviate the
expectation over the state distribution and action selection distribution under the
current policy π as shown in Equations 8.10 to 8.13. Note that the expectation
in Equations 8.18 and 8.19 is only over the state distribution, Es∼Pr(·|π)[…],
whereas for latter equations the expectation is over both the state and action
selection distributions, Es∼Pr(·|π),a∼π(·|s;ϕ)[…]. To see that the policy gradient
remains unchanged, we can rewrite the policy gradient theorem as follows:

∇ϕJ(ϕ)∝
∑
s∈S

Pr(s |π)
∑
a∈A

(Qπ(s, a)− b(s))∇ϕπ(a | s;ϕ) (8.17)

=Eπ

[∑
a∈A

(Qπ(s, a)− b(s))∇ϕπ(a | s;ϕ)

]
(8.18)

=Eπ

[∑
a∈A

π(a | s;ϕ) (Qπ(s, a)− b(s))
∇ϕπ(a | s;ϕ)
π(a | s;ϕ)

]
(8.19)

=Eπ

[
(Qπ(s, a)− b(s))

∇ϕπ(a | s;ϕ)
π(a | s;ϕ)

]
(8.20)

=Eπ

[
(Qπ(s, a)− b(s))∇ϕ logπ(a | s;ϕ)

]
(8.21)

=Eπ

[
Qπ(s, a)∇ϕ logπ(a | s;ϕ)

]
−Eπ

[
b(s)∇ϕ logπ(a | s;ϕ)

]
(8.22)

“marl-book-main” — 2025/6/18 — 20:07 — page 202 — #231

202 Chapter 8

=Eπ

[
Qπ(s, a)∇ϕ logπ(a | s;ϕ)

]
−
∑
s∈S

Pr(s |π)
∑
a∈A

b(s)∇ϕπ(a | s;ϕ)

(8.23)

=Eπ

[
Qπ(s, a)∇ϕ logπ(a | s;ϕ)

]
−
∑
s∈S

Pr(s |π)b(s)∇ϕ

∑
a∈A

π(a | s;ϕ)

(8.24)

=Eπ

[
Qπ(s, a)∇ϕ logπ(a | s;ϕ)

]
−
∑
s∈S

Pr(s |π)b(s)∇ϕ1 (8.25)

=Eπ

[
Qπ(s, a)∇ϕ logπ(a | s;ϕ)

]
−
∑
s∈S

Pr(s |π)b(s)0 (8.26)

=Eπ

[
Qπ(s, a)∇ϕ logπ(a | s;ϕ)

]
(8.27)

A state-value function V(s) is a common choice for a baseline. We can train
a state-value function to approximate the episodic returns by minimizing the
following loss:

L(θ) =
1
T

T−1∑
t=0

(
ut−V(st; θ)

)2
(8.28)

As a reminder, episodic returns ut denote the discounted cumulative sum of
rewards from time step t until the end of the episode (Equation 2.8, page 26).
Similarly, the REINFORCE policy loss with a state-value function as a baseline
can be written as:

L(ϕ) =− 1
T

T−1∑
t=0

(
ut−V(st; θ)

)
logπ(at | st;ϕ) (8.29)

8.2.4 Actor-Critic Algorithms

Actor-critic algorithms are a family of policy gradient algorithms that train a
parameterized policy, called the actor, and a value function, called the critic,
alongside each other. As for REINFORCE, the actor is optimized using gradient
estimates derived from the policy gradient theorem. However, in contrast to
REINFORCE (with or without a baseline), actor-critic algorithms use the critic
to compute bootstrapped return estimates. Using bootstrapped value estimates
to optimize policy gradient algorithms has two primary benefits.

First, bootstrapped return estimates allow us, as seen with temporal-difference
algorithms (Section 2.6), to estimate episodic returns just from the experience
of a single step. Using bootstrapped return estimates of a state-value function

“marl-book-main” — 2025/6/18 — 20:07 — page 203 — #232

Deep Reinforcement Learning 203

V , we can estimate episodic returns as follows:

Est∼Pr(·|π)
[
ut
∣∣ st] (8.30)

=Est∼Pr(·|π),at∼π(·|st),st+1∼T (·|st ,at)
[
R(st, at, st+1) + γut+1

∣∣ st] (8.31)

=Est∼Pr(·|π),at∼π(·|st),st+1∼T (·|st ,at)
[
R(st, at, st+1) + γV(st+1)

∣∣ st] (8.32)

By using bootstrapped return estimates, actor-critic algorithms are able to update
the policy (and critic) from the experience of a single time step, irrespective
of the following history of the episode. Particularly in environments with long
episodes, this allows significantly more frequent updates and, thereby, often
more efficient training than with REINFORCE, which only updates at the end
of each episode.

Second, bootstrapped return estimates exhibit lower variance compared to
the Monte Carlo estimates of episodic returns used in REINFORCE. Variance
is reduced because bootstrapped return estimates only depend on the current
state, received reward, and next state, and unlike episodic returns do not depend
on the entire history of the episode. However, this reduction in variance comes
at a price of introduced bias, because the used value function might not (yet)
approximate the true expected returns of states. In practice, we find that the
trade-off of bias for lower variance often improves training stability. Moreover,
N-step return estimates can be used. Instead of directly computing a value
estimate of the next state, N-step return estimates aggregate the received rewards
of N consecutive steps before computing a value estimate of the following state:

Est∼Pr(·|π)
[
ut | st]=Est∼Pr(·|π),at∼π(·|st),st+τ+1∼T (·|st+τ ,at+τ)

[
(

N−1∑
τ=0

γτR(st+τ , at+τ , st+τ+1)

)
+ γNV(st+N)

∣∣ st
]

(8.33)

For N = T , with T being the episode length, the computed return estimate
corresponds to the Monte Carlo episodic returns with no bootstrapped value
estimates, as used in REINFORCE. These return estimates have high variance
but are unbiased. For N = 1, we obtain one-step bootstrapped return estimates,
as given in Equation 8.32, with low variance and high bias. Using the hyperpa-
rameter of N allows us to choose between bias and variance of return estimates.
Figure 8.5 illustrates this trade-off of N-step return estimates at the example of
an actor-critic algorithm. We train a policy and state-value function using the
A2C algorithm with N-step returns (detailed in Section 8.2.5) in a single-agent
level-based foraging environment (Figure 8.3(a), page 192). After training
with N = 5, we collect 10,000 episodes with the trained policy and compute the
bias and variance of N-step return estimates with N ∈ [1, 10] and Monte Carlo

“marl-book-main” — 2025/6/18 — 20:07 — page 204 — #233

204 Chapter 8

1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step MC0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
ria

nc
e

1e 3

Variance
Bias

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Bi
as

1e 2

Figure 8.5: The variance and bias of N-step return estimates for N ∈ {1, …, 10}
and Monte Carlo returns for a state-value function trained with A2C for 100,000
time steps in a single-agent level-based foraging environment visualized in
Figure 8.3(a). We use N-step return estimates with N = 5 during training.

return estimates using the trained critic and dataset of episodes. As expected,
the variance of the N-step return estimates increases with increasing N and
Monte Carlo returns exhibit the highest variance. In contrast, the bias gradually
decreases with increasing N close to the level of Monte Carlo returns, which are
unbiased. In practice, N-step returns are commonly applied for small N, such
as N = 5 or N = 10, to obtain return estimates with fairly low bias and variance.

For notational brevity, we will write pseudocode and equations using one-
step bootstrapped return estimates, but note that N-step return estimates can be
applied to substitute any of these value estimates. In the following subsections,
we will introduce two actor-critic algorithms: advantage actor-critic (A2C) and
proximal policy optimization (PPO).

8.2.5 A2C: Advantage Actor-Critic

Advantage actor-critic (A2C)6 (Mnih et al. 2016) is a foundational actor-critic
algorithm that, as the name suggests, computes estimates of the advantage of a
policy to guide the policy gradients. The advantage for a state s and action a is

6. Mnih et al. (2016) originally proposed the asynchronous advantage actor-critic (A3C) algorithm,
which uses asynchronous threads to collect experience from the environments. For simplicity, and
because in practice it often does not make a difference, we avoid the asynchronous aspect of this
algorithm and introduce a simplified version of its synchronous implementation (A2C). We will
further discuss asynchronous and synchronous parallelization of training in Section 8.2.8.

“marl-book-main” — 2025/6/18 — 20:07 — page 205 — #234

Deep Reinforcement Learning 205

given by
Advπ(s, a) = Qπ(s, a)−Vπ(s) (8.34)

with Qπ and Vπ representing action-value functions and state-value functions
with respect to a policy π, respectively. For the policy π, the action value
Qπ(s, a) represents the expected return of π when first applying action a in state
s and afterwards following π. In contrast, the state value Vπ(s) represents the
expected return when following the policy π already in state s rather than taking
a specific predetermined action. The advantage can therefore be understood
as quantifying how much higher the expected returns are when applying the
specific action a compared to following the policy π in state s. The advantage
takes on positive values whenever the chosen action a achieves higher expected
return than the current policy π. Similarly, the advantage is negative when
the chosen action a achieves lower expected return than the current policy π.
This interpretation of the advantage can be used to guide the optimization of
the policy. For a positive advantage, we should increase the probability of the
policy π to select action a in state s; and we should decrease the probability of
the policy π to select action a in state s whenever the advantage is negative. In
the following, we will omit the superscript π and assume that the advantage and
value functions are computed with respect to the current policy π.

As defined in Equation 8.34, estimating the advantage requires both an action-
value function and a state-value function. Fortunately, we can estimate an
action-value function using the immediate rewards and the state-value estimate
of the following state, while accounting for the fact that the value of terminal
states must be zero as explained in Section 8.1.1:

Q(st, at) =

{
rt if st+1 is terminal

rt + γV(st+1) otherwise
(8.35)

With this estimation of the action-value function, we only rely on a state-value
function to approximate the advantage:

Adv(st, at) = Q(st, at)−V(st) =

{
rt−V(st) if st+1 is terminal

rt + γV(st+1)−V(st) otherwise
(8.36)

Similar to return estimates (Equation 8.33), we can estimate the advantage using
N-step returns to reduce the variance of the obtained estimate:

Adv(st, at) =
N−1∑
τ=0

γτR(st+τ , at+τ , st+τ+1)

{
−V(st) if st+N is terminal

+γNV(st+N)−V(st) otherwise
(8.37)

“marl-book-main” — 2025/6/18 — 20:07 — page 206 — #235

206 Chapter 8

Algorithm 14 Simplified advantage actor-critic (A2C)

1: Initialize actor network π with random parameters ϕ
2: Initialize critic network V with random parameters θ
3: Repeat for every episode:
4: for time step t = 0, 1, 2, . . . do
5: Observe current state st

6: Sample action at∼π(· | st;ϕ)
7: Apply action at; observe reward rt and next state st+1

8: if st+1 is terminal then
9: Advantage Adv(st, at)← rt−V(st; θ)

10: Critic target yt← rt

11: else
12: Advantage Adv(st, at)← rt + γV(st+1; θ)−V(st; θ)
13: Critic target yt← rt + γV(st+1; θ)

14: Actor loss L(ϕ)←−Adv(st, at) logπ(at | st;ϕ)
15: Critic loss L(θ)←

(
yt−V(st; θ)

)2

16: Update parameters ϕ by minimizing the actor loss L(ϕ)
17: Update parameters θ by minimizing the critic loss L(θ)

In A2C, we optimize the parameters ϕ of the actor to maximize the advantage
by minimizing the following loss:

L(ϕ) =−Adv(st, at) logπ(at | st;ϕ) (8.38)

For the optimization of the parameters of the critic θ, we compute the squared
error of the value estimate of the current state and the bootstrapped target
estimate yt (here one-step bootstrapped target estimate)

yt =

{
rt if st+1 is terminal

rt + γV(st+1; θ) otherwise
(8.39)

leading to the following loss:

L(θ) =
(
yt−V(st; θ)

)2
(8.40)

Commonly, multi-step target estimates are used to reduce the variance of the
critic’s loss. In this case, the target can be computed as shown in Equation 8.33.

Full pseudocode for the A2C algorithm is given in Algorithm 14. We denote
this algorithm as “Simplified A2C” because the algorithm was originally pro-
posed with multi-step estimates as defined in Equations 8.33 and 8.37 and two

“marl-book-main” — 2025/6/18 — 20:07 — page 207 — #236

Deep Reinforcement Learning 207

further techniques: asynchronous or synchronous parallelization of training, and
entropy regularization to incentivize exploration. We will discuss parallelization
of training in Section 8.2.8. Entropy regularization adds an additional term to
the actor loss given by the negative entropy of the policy in the current state:

−H (π(· | s;ϕ)) =
∑
a∈A

π(a | s;ϕ) logπ(a | s;ϕ) (8.41)

The entropy of the policy π is a measure of the policy’s uncertainty. The entropy
is maximized for a uniform distribution, that is, when the policy selects all
actions with equal probability. Minimizing the negative entropy, that is, maxi-
mizing the entropy, as part of the actor loss penalizes the policy for assigning a
very high probability to any action. This regularization term discourages pre-
mature convergence to a suboptimal close-to-deterministic policy and, thereby,
incentivizes exploration.

8.2.6 PPO: Proximal Policy Optimization

In all algorithms discussed in the previous sections, the policy parameters are
continually updated using gradients derived with the policy gradient theorem.
These gradients aim to move the policy parameters toward a policy with higher
expected returns. However, any individual gradient update step, even for small
learning rates, might lead to significant changes of the policy and could reduce
the expected performance of the policy. The risk of such significant changes
of the policy as a consequence of a single gradient optimization step can be
reduced using trust regions. Intuitively, trust regions define an area within the
space of policy parameters in which the policy would not change significantly
and, thus, we would “trust” that the resulting policy with such parameters
would not lead to a significant reduction in performance. Trust region policy
optimization (TRPO) (Schulman et al. 2015) constrains each optimization step
of the policy in policy gradient RL algorithms to a small trust region. In this
way, TRPO reduces the risk of any degradation in quality of the policy and,
thereby, gradually and safely improves the quality of the policy. However, each
update with TRPO requires either solving a constrained optimization problem
or computing a penalty term, which are both computationally expensive.

Proximal policy optimization (PPO)7 (Schulman et al. 2017) builds on the
idea of trust regions for policy optimization and computes a computationally

7. Schulman et al. (2017) propose two versions of the PPO algorithm in their work. In this section,
we describe the PPO algorithm with a clipped surrogate objective. This algorithm is simpler and
more common than the alternative PPO algorithm with a KL divergence penalty term, and often
just referred to as PPO.

“marl-book-main” — 2025/6/18 — 20:07 — page 208 — #237

208 Chapter 8

Algorithm 15 Simplified proximal policy optimization (PPO)

1: Initialize actor network π with random parameters ϕ
2: Initialize critic network V with random parameters θ
3: Repeat for every episode:
4: for time step t = 0, 1, 2, . . . do
5: Observe current state st

6: Sample action at∼π(· | st;ϕ)
7: Apply action at; observe reward rt and next state st+1

8: πβ(at | st)←π(at | st;ϕ)
9: for epoch e = 1, . . . , Ne do

10: ρ(st, at)←π(at | st;ϕ)÷πβ(at | st)
11: if st+1 is terminal then
12: Advantage Adv(st, at)← rt−V(st; θ)
13: Critic target yt← rt

14: else
15: Advantage Adv(st, at)← rt + γV(st+1; θ)−V(st; θ)
16: Critic target yt← rt + γV(st+1; θ)

17: Actor loss L(ϕ)←−min

(
ρ(st, at)Adv(st, at),
clip

(
ρ(st, at), 1− ϵ, 1 + ϵ

)
Adv(st, at)

)
18: Critic loss L(θ)←

(
yt−V(st; θ)

)2

19: Update parameters ϕ by minimizing the actor loss L(ϕ)
20: Update parameters θ by minimizing the critic loss L(θ)

efficient surrogate objective to avoid large jumps in policy in a single optimiza-
tion step. This surrogate objective makes use of importance sampling weights
ρ(s, a) which are defined as the fraction of probabilities of selecting a given
action a in state s for two policies:

ρ(s, a) =
π(a | s;ϕ)
πβ(a | s)

(8.42)

For the importance sampling weight ρ, the policy π parameterized by ϕ rep-
resents the policy we want to optimize, and πβ represents a behavior policy
that was used to select the action a in state s. The importance sampling weight
can be thought of as a factor to shift from the distribution of data encountered
under policy πβ to the data distribution of policy π. This factor adjusts the data
distribution to make the data generated by πβ “appear” on-policy for π.

“marl-book-main” — 2025/6/18 — 20:07 — page 209 — #238

Deep Reinforcement Learning 209

Using these weights, PPO is able to update the policy multiple times using
the same data. Typical policy gradient algorithms rely on the policy gradient
theorem and, therefore, assume data to be on-policy. However, after a single
update of the policy, the policy changes and any previously collected data is
not on-policy anymore. Additionally, the importance sampling weight can be
seen as a measure of divergence of the policies, with an importance weight of 1
corresponding to both policies having equal probabilities of selecting an action
a in state s. PPO makes use of these properties to update the policy multiple
times using the same data and restrict the change of the policy by restricting the
importance sampling weight. This is achieved using an actor loss with clipped
importance sampling weights

L(ϕ) =−min
(
ρ(st, at)Adv(st, at),
clip

(
ρ(st, at), 1− ϵ, 1 + ϵ

)
Adv(st, at)

)
(8.43)

where ρ represents the importance sampling weight as defined in Equation 8.42,
the advantage Adv(st, at) is computed using a state-value function as given in
Equation 8.36, and ϵ represents a hyperparameter which determines how much
the policy is allowed to deviate from the previous policy πβ .

Pseudocode for PPO is given in Algorithm 15, with Ne denoting the num-
ber of epochs, i.e. number of updates, for a given batch of data. Similar to
A2C, we denote the presented algorithm as “Simplified PPO” because it is
typically applied in combination with parallel training (Section 8.2.8), entropy
regularization (Section 8.2.5), and N-step returns (Section 8.2.4) to obtain larger
batches of data for more stable optimization and improve the exploration of the
algorithm.

8.2.7 Policy Gradient Algorithms in Practice

Figure 8.6 compares the policy gradient algorithms REINFORCE, A2C,
and PPO in the single-agent level-based foraging environment introduced in
Figure 8.3(a) on page 192. We see that REINFORCE learns to solve the task in
most runs at the end of training, but the episodic returns exhibit high variance
all throughout training. This variance can be explained by the high variance
of Monte Carlo returns (Figure 8.5) and, thus, highly variant policy gradients
during training. In contrast, A2C and PPO with N-step returns reach the optimal
performance across all runs within 60,000 time steps. This experiment demon-
strates the improved stability and sample efficiency of actor-critic algorithms
such as A2C and PPO. In particular, with N-step returns, training is significantly
more stable than REINFORCE due to less variant return estimates, and the
agent robustly obtains optimal returns across all episodes thereafter. Lastly, we

“marl-book-main” — 2025/6/18 — 20:07 — page 210 — #239

210 Chapter 8

0 20000 40000 60000 80000 100000
Environment time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

REINFORCE
A2C
PPO

Figure 8.6: Learning curves for REINFORCE, A2C, and PPO in the single-
agent level-based foraging environment shown in Figure 8.3(a). We train all
algorithms for 100,000 time steps. Visualized learning curves and shading
correspond to the mean and standard deviation across discounted episodic
returns across five runs with different random seeds. Across all algorithms, we
use a discount factor γ = 0.99 during training, small critic and actor networks
with two layers of thirty-two hidden units, ReLU activation function, and we
conduct a small grid search to identify suitable hyperparameters. REINFORCE
is trained without a baseline and with a learning rate of α = 10−3. For A2C and
PPO we use N-step returns with N = 5 and a learning rate of 3 · 10−4. Lastly,
PPO uses a clipping parameter ϵ= 0.2 and optimizes its networks for Ne = 4
epochs using the same batch of experience.

see that PPO is able to learn slightly faster than A2C, which can be explained
by its optimization being able to use each batch of experiences multiple times.

8.2.8 Concurrent Training of Policies

On-policy policy gradient algorithms cannot make use of a replay buffer, as
applied in off-policy value-based RL algorithms such as DQN (Section 8.1.3).
However, the replay buffer is a key component of off-policy RL algorithms in
order to break correlations between consecutive experiences, and it provides
larger batches of data to compute the loss. This raises the question of how to
break correlations and obtain batches of data for sample-efficient optimization
of on-policy policy gradient algorithms. In this section, we introduce two
approaches to target this problem by parallelizing the interaction of the agent
with the environment using multi-threading capabilities of modern hardware:
synchronous data collection and asynchronous training.

“marl-book-main” — 2025/6/18 — 20:07 — page 211 — #240

Deep Reinforcement Learning 211

Thread 1

...

Agent

Policy Training

Vectorization

Environment 1

Thread n

Environment n

Figure 8.7: Visualization of synchronous data collections to parallelize inter-
actions of the agent across multiple environment instances running in parallel.
Environment instances are executed across different threads. At each time step,
the agent selects a vector of actions at

b with one action for each environment
conditioned on the last batch of states st

b. Each environment instance receives
its action and transitions to a new state, returning both the reward and new state.
The batch of rewards rt

b and new states st+1
b from all environment instances is

then passed to the agent as vectors for training and its next action selection. The
parallelization of this technique is synchronous because the agent has to wait
with its next action selection until all environment instances have finished their
current transition.

Synchronous data collection, visualized in Figure 8.7, initiates separate
instances of the environment on multiple threads. At every time step, the
agent receives a batch of states and rewards from all environment instances and
independently decides on its action selection for every environment. A batch
of selected actions is then sent to each of the environments in its respective
thread to transition to a new state and receive a new reward. This interaction
is repeated throughout all of training, and is synchronous because the agent
has to wait for its next action selection until all environment instances have
transitioned to their new state. Synchronous data collection is simple to deploy
with minimal changes required for the training of the RL algorithm, and it
significantly increases the amount of data samples available for each update.
Similarly to the batches sampled from a replay buffer, averaging gradients
across such batches of experience makes gradients more stable and optimization
more efficient. Moreover, the forward pass over batches of inputs through a

“marl-book-main” — 2025/6/18 — 20:07 — page 212 — #241

212 Chapter 8

Algorithm 16 Simplified A2C with synchronous environments

1: Initialize actor network π with random parameters ϕ
2: Initialize critic network V with random parameters θ
3: Initialize K parallel environments
4: Repeat for every episode:
5: for time step t = 0, 1, 2, . . . do
6: Observe a batch of current states for all environments

[
st,1 · · · st,K

]T

7: Sample actions at,k∼π(· | st,k;ϕ) for k = 1, …, K
8: Apply action at,k in kth environment for k = 1, …, K; observe rewards[

rt,1 · · · rt,K
]T

and next states
[
st+1,1 · · · st+1,K

]T

9: if st+1,k is terminal then
10: Advantage Adv(st,k, at,k)← rt,k−V(st,k; θ)
11: Critic target yt,k← rt,k

12: else
13: Advantage Adv(st,k, at,k)← rt,k + γV(st+1,k; θ)−V(st,k; θ)
14: Critic target yt,k← rt,k + γV(st+1,k; θ)

15: Actor loss L(ϕ)← 1
K

∑K
k=1 Adv(st,k, at,k) logπ(at,k | st,k;ϕ)

16: Critic loss L(θ)← 1
K

∑K
k=1

(
yt,k−V(st,k; θ)

)2

17: Update parameters ϕ by minimizing the actor loss L(ϕ)
18: Update parameters θ by minimizing the critic loss L(θ)

neural network can be parallelized using efficient vector and matrix operations,
so the computation required for synchronous data collection is highly efficient.
The benefits of vectorized computation are particularly significant for modern
hardware such as GPUs, which are able to perform many operations in parallel.

Lastly, correlations of consecutive experiences are partly broken because
experiences across different environment instances may vary significantly due
to different initial states and probabilistic transitions.

We show the pseudocode for the simplified A2C algorithm with synchronous
data collection in Algorithm 16. The algorithm is identical to Algorithm 14,
except that the agent computes its loss over batches of experience from all
environment instances and independently interacts with every environment.

“marl-book-main” — 2025/6/18 — 20:07 — page 213 — #242

Deep Reinforcement Learning 213

0.0 0.2 0.4 0.6 0.8 1.0
Environment time steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

A2C 1 sychronous environment
A2C 4 sychronous environments
A2C 16 sychronous environments
A2C 64 sychronous environments

(a) Performance per time steps trained

0 50 100 150 200 250 300
Training time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

A2C 1 sychronous environment
A2C 4 sychronous environments
A2C 16 sychronous environments
A2C 64 sychronous environments

(b) Performance per training time

Figure 8.8: Learning curves for A2C in a single-agent level-based foraging
environment similar to the one shown in Figure 8.3(a) but with a 12× 12
grid and a total of two items the agent has to collect each episode for optimal
performance. We train simplified A2C for five minutes with K ∈ {1, 4, 16, 64}
synchronous environments and compare the (a) sample efficiency as given
by the episodic returns per time steps trained and (b) wall-clock efficiency
as given by the episodic returns per time trained. Visualized learning curves
and shading correspond to the mean and standard deviation across discounted
episodic returns across five runs with different random seeds. For all algorithms,
we use a discount factor γ = 0.99 during training, small critic and actor networks
with two layers of thirty-two hidden units, ReLU activation function, a learning
rate of α = 10−3, and N-step returns with N = 10.

Note that simplified A2C optimizes its networks once each of its K environ-
ments has completed a single time step.8 Therefore, the agent collects more
experiences within the same wall-clock time9 for larger values of K but also
uses more experience for each optimization of its networks as it makes use of
the experience across all K environments.

To illustrate the impact of synchronous parallel environments on the training
of the agent, we train the simplified A2C algorithm with synchronous envi-
ronments (Algorithm 16) with varying numbers of synchronous environments
in a single-agent level-based foraging environment. The environment has a
larger 12× 12 grid, and the agent has to collect two items to receive all possible
episodic rewards. We train the agent with K ∈ {1, 4, 16, 64} for five minutes and

8. We commonly use N-step returns to obtain value estimates with reduced bias. In this case, the
batch of K ·N experiences across N time steps and K environments can be used to optimize the
networks.
9. Wall-clock time is the elapsed time that a clock or stopwatch would measure between the start
and end of the training, irrespective of the required resources and number of parallel threads or
processes.

“marl-book-main” — 2025/6/18 — 20:07 — page 214 — #243

214 Chapter 8

Thread 1

Agent

Policy

Environment 1

Policy Training

Thread n

Environment n

Policy Training

...

Figure 8.9: Visualization of asynchronous training to parallelize the optimiza-
tion of the agent across multiple threads. Each thread keeps a copy of the
agent to interact with its separate environment instance. Training is done within
each thread and only uses the data collected from the environment instance in
that particular thread. Whenever gradients are computed to update the agent’s
networks within the training of any thread, the networks of the central agent are
updated and the updated parameters are shared with all threads. This ensures
that all threads use the most up-to-date networks at all times and updates of any
thread affect the policy executed by other threads.

present (discounted) evaluation returns across time steps trained and wall-clock
training time in Figure 8.8. On the one hand, the experiment illustrates that
training for smaller values of K can be comparably sample-efficient because of
the frequent optimizations of the agent’s networks (Figure 8.8(a)). On the other
hand, the optimization is less stable because each optimization is computed over
a smaller batch of experiences, so the agent trained with K = 1 environments
does not converge to the optimal policy. Inspecting the wall-clock efficiency in
Figure 8.8(b), we see that training with larger values of K can be considerably
more efficient (while making use of larger amounts of computational resources).
However, these benefits diminish with a growing number of synchronous en-
vironments. For large values of K, individual threads have to wait for other
threads to finish their transition to receive the next action from the agent and
continue their interaction, so idle time of threads increases the more parallel
environments are deployed.

Asynchronous training, visualized in Figure 8.9, instead parallelizes the opti-
mization of the agent. In addition to keeping an instance of the environment,
each thread keeps a copy of the agent to interact with its environment instance.

“marl-book-main” — 2025/6/18 — 20:07 — page 215 — #244

Deep Reinforcement Learning 215

Each thread separately computes the loss and gradients to optimize the parame-
ters of the agent’s networks based only on data collected within the environment
instance of the thread. Once gradients are computed, the networks of the central
agent are updated and the newly obtained parameters are sent to all threads
to update their agent copies. Therefore, the agent’s networks are separately
updated by all threads, with each thread’s optimization only using data collected
within that particular thread. Implementing memory-safe asynchronous paral-
lelization and optimization is more involved and requires careful engineering
considerations, but it has the major benefit of not relying on information of all
threads to proceed for every interaction. Threads can independently complete
transitions and optimizations, which minimizes potential idle time.

Due to the parallelized computation, both synchronous environments and
asynchronous training can efficiently leverage multiple threads ranging from a
few threads supported by CPUs found in most consumer laptops and desktop
computers, up to thousands of threads executed across large distributed com-
puting clusters. Whenever multiple CPU threads are available, synchronous
data collection is a comparably simple approach to significantly improve the
efficiency of policy gradient algorithms. If multiple machines with dedicated
accelerators for deep learning models are available, asynchronous training may
be preferred due to its ability to independently optimize network parameters
within each thread. However, it is worth noting that both approaches assume
that multiple instances of environment can be executed in parallel. This is not
always the case, for example, when the environment is a physical system with a
single instance such as a robot. In these cases, parallelization of data collection
with these techniques is not possible and other techniques have to be used to
improve the efficiency of policy gradient algorithms.

We further note that these techniques are most commonly applied with on-
policy policy gradient because these algorithms cannot use replay buffers, but
parallel training and data collection are also applicable to off-policy algorithms.
Also, in this section we focused on two conceptually simple ideas to improve
the efficiency of policy gradient algorithms. More complex ideas have been
proposed in the literature, which largely focus on parallelization across large
computing infrastructures (e.g., Espeholt et al. 2018; Espeholt et al. 2020).

8.3 Observations, States, and Histories in Practice

In this chapter, we defined deep RL algorithms conditioned on states of the
environment. However, as discussed in Section 3.4, the agent might not observe
the full state of the environment but only receive a partial view of the current

“marl-book-main” — 2025/6/18 — 20:07 — page 216 — #245

216 Chapter 8

state. Consider for example an environment in which the agent has to control a
robot. Using its sensors, the agent perceives its environment, but some objects
might be out of its sensory view or be occluded by other objects. In such
partially observable environments, learned value functions and policies should
be conditioned on the episodic history of observations, ht = (o0, …, ot), to make
use of all information perceived within an episode until time step t.

To condition value functions and policies on the history of observations, we
could concatenate all observations into a single vector representing ht and use
this vector as the input to the policy and value networks. However, this approach
is not practical because the dimensionality of the input vector grows as past
observations are accumulated. Most neural network architectures, including
the commonly used feedforward neural networks, require a constant input
dimensionality. To represent a concatenated observation vector as an input of
constant dimensionality for a deep value function or policy network, we could
represent the history as a zero-padded vector of sufficient dimensionality to
represent a history of maximum episode length.10 However, such an input vector
would be of high dimensionality and very sparse, that is, it would contain mostly
zero values for most histories. These properties would make it difficult to learn
a good policy and value function conditioned on such episodic histories.

We have already seen a deep learning technique to address these challenges.
Recurrent neural networks, introduced in Section 7.5.2, are designed to process
sequences of inputs. By treating the history of observations as such a sequence,
a recurrent neural network is able to process the history one observation at a
time. At each time step, the network only receives the most recent observation
as its input and continually updates its hidden state to represent information
about the full episodic history of observations. At the beginning of each episode,
this hidden state is initialized to a zero-valued vector. By using recurrent neural
networks within the architecture of policies and value functions in partially
observable environments, RL algorithms can receive one observation at a time to
internally represent the full episodic history. Using this architectural change for
all networks, the deep RL algorithms introduced in this chapter can be applied
to partially observable environments. Among recurrent network architectures,
gated recurrent units (GRUs) and long short-term memory (LSTM) networks
are commonly used in deep RL (Hausknecht and Stone 2015; Rashid et al. 2018;
Jaderberg et al. 2019; Morad et al. 2023).

10. This approach is not applicable to tasks with potentially infinite episodes.

“marl-book-main” — 2025/6/18 — 20:07 — page 217 — #246

Deep Reinforcement Learning 217

8.4 Summary

In this chapter, we introduced deep single-agent RL algorithms that leverage
neural networks to represent the value function and policy of the agent. In the
following, we summarize the key concepts introduced in this chapter:

• With tabular value functions, updating the value of a state only changes the
value estimate for that particular state. In contrast, with function approxima-
tion such as neural networks, updating the value of a state may change the
value estimates of all states. This generalization property is a key advantage
of function approximation over tabular representations but also introduces
new challenges.

• The moving target problem arises whenever function approximation is used
to compute bootstrapped target values. These target values depend on the
value of the next state, and thus change with every parameter update. To
address the resulting unstable training, target networks are introduced. These
networks are initialized as copies of the main value functions and used to
compute target values. Target networks are updated less frequently than the
value network and thus provide a more stable target value.

• Correlations of consecutive experiences represent a second challenge when
training an RL with function approximators. The experience of the agent
at any time strongly depends on the previous experience, and the overall
data distribution shifts as the policy changes. To address these problems, an
experience replay buffer is introduced. The replay buffer stores experiences
of transitions. During training, random batches of experiences can then be
sampled to update the value function. This approach breaks the temporal
correlations between consecutive transitions and allows us to reuse experi-
ences multiple times during training. As a result, training becomes more
sample-efficient and stable.

• Deep Q-learning (DQN) trains an action-value function with Q-learning
updates but replaces the tabular value function with a neural network. The
algorithm uses both target networks and an experience replay buffer to stabi-
lize training and is able to learn action-value functions for high-dimensional
state spaces. DQN represents a common foundation for deep RL algorithms.

• The policy gradient theorem is the foundation of policy gradient RL algo-
rithms. These algorithms represent the policy of an agent with function
approximation. The theorem states that the gradient of the expected return
with respect to the parameters of the policy can be expressed as the expected
value of the product of the gradient of the log-probability of an action and
the action-value function under the current policy.

“marl-book-main” — 2025/6/18 — 20:07 — page 218 — #247

218 Chapter 8

• The REINFORCE algorithm represents a foundational policy gradient RL
algorithm that approximates the expected value of experiences under the
current policy using Monte Carlo samples of returns for completed episodes.
Monte Carlo estimates are unbiased but can exhibit high variance. To reduce
the variance, a baseline can be subtracted from the return estimates. A
state-value function is a common baseline that reduces variance without
introducing bias.

• Actor-critic algorithms are a family of RL algorithms which simultaneously
train a parameterized policy, the actor, and a parameterized value function,
the critic. The critic is trained to represent a value function with bootstrapped
target values. Using the policy gradient theorem and return estimates of
the critic, the parameters of the actor are updated. The advantage, defined
as the difference between the expected value of applying a given action in
a state and the value of the state under the current policy, can be used to
quantify the quality of an action in a given state. The Advantage actor-critic
(A2C) algorithm represents one of the first actor-critic algorithms that use
this advantage to update the policy and value function.

• Proximal policy optimization (PPO) extends A2C by introducing a surrogate
objective function based on the concept of trust regions. The idea is that large
changes in the policy might result in a significant reduction in performance
of the policy. To prevent such large changes, the surrogate objective clips
the computed policy gradient. Additionally, the objective is weighted with
importance sampling weights to allow for multiple times of the policy from
the same experience. These changes can result in more stable training and
better sample efficiency than A2C.

• To leverage the parallelization capabilities of modern hardware, the experi-
ence collection and optimization of deep RL algorithms can be parallelized.
Concurrent data collection gathers experience from multiple environments
in parallel. Each environment can be simulated on a single CPU thread, and
experiences across all environments are aggregated to optimize the policy
and value functions. Instead, asynchronous training individually computes
gradients in each thread using separate environments and copies of the cur-
rent neural networks. Using the gradients of all asynchronous gradient
computations, the networks of all threads are centrally updated.

After introducing deep learning in Chapter 7 and deep RL algorithms in this
chapter, we are now ready to introduce deep multi-agent RL algorithms in the
next chapter. We will extend many of the concepts and families of algorithms
introduced in Chapters 5 and 6 using neural networks to train MARL agents in
complex environments.

“marl-book-main” — 2025/6/18 — 20:07 — page 219 — #248

9 Multi-Agent Deep Reinforcement Learning

In Chapter 8, we saw that tabular MARL algorithms, introduced in Part I,
are limited because their value functions are only updated for visited states.
This inability to generalize to previously unseen states makes tabular MARL
algorithms ineffective in environments with many states, because the agent
might not encounter states a sufficient number of times to obtain accurate value
estimates for the state. Deep learning, introduced in Chapter 7, provides us
with the tools to train neural networks as flexible function approximators that
generalize over large input spaces. Chapter 8 already demonstrated how deep
learning can be used to train parameterized value functions and policies for
RL. This chapter will extend these ideas to MARL and introduce fundamental
algorithms for training multiple agents to solve complex tasks.

To set the context for the algorithms presented in this chapter, we will begin
by discussing different paradigms of MARL training that differ in the informa-
tion available for training and execution of agent policies. Then, we will discuss
deep independent learning algorithms for MARL, which naively apply deep
single-agent RL by training each agent’s policy while ignoring the presence of
other agents. After that, we will introduce more sophisticated algorithms that
make use of joint information from multiple agents available during training
to improve the learning process for policy gradient and value-based MARL
algorithms. To inform agents about the policies of other agents, we will discuss
how agent modeling (Section 6.3) can be extended with deep learning. Con-
currently training multiple agents often requires large numbers of samples to
learn effective policies. Therefore, we will also discuss how multiple agents
can share networks and experiences to make the training more sample efficient.
In zero-sum games, agents can be trained in self-play. Under this paradigm, a
single agent is trained to play a zero-sum game by playing against copies of its
own policy. Self-play has been highly impactful and is a core component of
several MARL breakthroughs in competitive board- and video-game playing.

“marl-book-main” — 2025/6/18 — 20:07 — page 220 — #249

220 Chapter 9

Lastly, we will discuss how self-play can be extended to general-sum games by
training populations of agents to play against each other.

9.1 Training and Execution Modes

MARL algorithms can be categorized based on the information available during
the training and execution of policies. During training, the MARL algorithm
may be restricted to only use local information observed by each agent (“de-
centralized training”) or might be able to leverage information about all agents
in the multi-agent system (“centralized training”). After the training of agent
policies, the question of available information remains: What information can
agents use to make their action selection, that is, to condition their policy on?
Most commonly, policies of agents are only conditioned on their local history
of observations (“decentralized execution”), but under some circumstances it
might be reasonable to assume availability of information from all agents (“cen-
tralized execution”). This section will give a brief description of the three main
categories of MARL algorithms based on their modes of training and execution.

9.1.1 Centralized Training and Execution

In centralized training and execution, the learning of agent policies as well
as the policies themselves use some type of information or mechanism that is
centrally shared between the agents. Centrally shared information may include
the agents’ local observation histories, learned world and agent models, value
functions, or even the agents’ policies themselves. In the case of centralized
training and execution, we knowingly depart from the typical setting defined by
a POSG (Section 3.4), since agents are no longer limited to only receiving local
observations of the environment. Therefore, centrally shared information can
be considered privileged information that may benefit the training or execution
of policies if the application scenario allows for it.

An example of this category is central learning (Section 5.3.1), which reduces
a multi-agent game to a single-agent problem by using the joint-observation
history (the history of observations of all agents) to train a single central policy
over the joint-action space, which then sends actions for all agents. This
approach has the primary benefit of being able to leverage the joint-observation
space of the environment, which can be useful in environments with partial
observability or where complex coordination is required by the agents. For
instance, a value function can be conditioned on the history of joint observations
to better estimate the expected returns. However, central learning is often not
feasible or applicable for multiple reasons: (1) the joint reward across all agents

“marl-book-main” — 2025/6/18 — 20:07 — page 221 — #250

Multi-Agent Deep Reinforcement Learning 221

has to be transformed into a single reward for training, which might be difficult
or impossible in general-sum games, (2) the central policy has to learn over
the joint-action space, which typically1 grows exponentially in the number of
agents, and (3) agents might be physically or virtually distributed entities, which
might not allow for communication from and to a central policy for centralized
control. For example, for autonomous vehicles, it may not be realistic to expect
to transmit and receive the sensor and camera information of all surrounding
vehicles in real time. Furthermore, even if information sharing across vehicles
was possible and instantaneous, learning a centralized control policy to control
all vehicles would be very difficult due to the scale and complexity of the
problem. In this case, decentralized control is a more reasonable approach
to implement individual agents for each vehicle and to decompose the larger
single-agent problem into multiple smaller multi-agent problems.

9.1.2 Decentralized Training and Execution

In decentralized training and execution, the training of agent policies and the
policies themselves are fully decentralized between the agents, meaning that
they do not rely on centrally shared information or mechanisms. Decentralized
training and execution is a natural choice for MARL training in scenarios in
which agents lack the information or ability to be trained or executed in a
central manner. Financial markets are an example of such a scenario. Trading
individuals and companies do not know how other agents might act or how they
affect the markets, and any such influence can only be partially observed.

An example of this category is independent learning (Section 5.3.2), in which
each agent does not explicitly model the presence and actions of other agents.
Instead, other agents are viewed as a (non-stationary) part of the environment
dynamics, so each agent trains its policy in a completely local way using single-
agent RL techniques. Independent learning has the benefit of scalability by
avoiding the exponential growth in action spaces of central learning, and it
is naturally applicable in scenarios where agents are physically or virtually
distributed entities that cannot communicate with each other. However, inde-
pendent learning has three downsides: (1) the agents’ policies are not able
to leverage information about other agents (neither during training of their
policies nor for their execution), (2) training can be significantly affected by
non-stationarity caused by the concurrent training of all agents, as we discussed
in Section 5.4.1, and (3) agents cannot distinguish between stochastic changes in
the environment as a consequence of other agents’ actions and the environment

1. In Section 5.4.4, we discussed an example in which the growth is not considered exponential.

“marl-book-main” — 2025/6/18 — 20:07 — page 222 — #251

222 Chapter 9

transition function. Effectively, with changes in the policies of other agents, the
transition, observation, and reward functions, as perceived by each individual
agent, change as well. These changes can lead to unstable learning and poor
convergence of independent learning. Despite these challenges, independent
learning often performs well in practice and can serve as a first step to develop
more complex algorithms. Building on independent learning algorithms with
tabular value functions (Section 5.3.2), we will introduce deep independent
learning algorithms in Section 9.3. We note that independent learning is not
the only way decentralized training can be implemented. Agent modeling
(Section 6.3), for example, covers a variety of methods that can be used to
model the changing behavior of other agents in the environment.

9.1.3 Centralized Training with Decentralized Execution

Centralized training and decentralized execution (CTDE) represents the third
paradigm of MARL. These algorithms use centralized training to train agent
policies, while the policies themselves are designed to allow for decentralized
execution. For example, during training the algorithm may utilize the shared
local information of all agents to update the agent policies, while each agent’s
policy itself only requires the agent’s local observation to select actions, and
can thus be deployed fully decentralized. In this way, CTDE algorithms aim to
combine the benefits of both centralized training and decentralized execution.

CTDE algorithms are particularly common in deep MARL because they
enable conditioning approximate value functions on privileged information in
a computationally tractable manner. A multi-agent actor-critic algorithm, for
example, may train a policy with a centralized critic that can be conditioned
on the joint-observation history and, thereby, provide more accurate estimation
of values compared to a critic that only receives a single agent’s observation
history. During execution, the value function is no longer needed since the
action selection is done by the policy. To enable decentralized execution, the
policies of agents are only conditioned on their local observation histories. This
chapter will discuss a variety of deep MARL algorithms that operate within
CTDE regimes, including algorithms based on multi-agent policy gradient
(Section 9.4), value decomposition (Section 9.5), agent modeling (Section 9.6),
and experience sharing (Section 9.7), among others.

9.2 Notation for Multi-Agent Deep Reinforcement Learning

In line with the notation used in Chapter 8, the parameters of the policy and
value function of agent i will be denoted with ϕi and θi, respectively. We will

“marl-book-main” — 2025/6/18 — 20:07 — page 223 — #252

Multi-Agent Deep Reinforcement Learning 223

denote the policy, value function, and action-value function of agent i with
π(·;ϕi), V(·; θi), and Q(·; θi), respectively. To keep notation slim, we do not
explicitly denote the policy and value functions with a subscript of the respective
agent when it is clear from the parameterization which agent is considered. For
example, we will write π(·;ϕi) instead of πi(·;ϕi). We note that this notation
simplifies potential distinction between agent networks; the networks might
differ beyond the parameterization, for example, due to varying input and output
dimensions for different observation and action spaces across agents.

In partially observable multi-agent games, agents only receive local ob-
servations about the environment, which might be different between agents
(Section 3.4). During centralized training, agents may use joint information
across all agents during training but condition their policies only on their local
observation history. To represent this discrepancy of information available
during training and execution, we will introduce all following MARL algo-
rithms using notation for partially observable environments. For this purpose,
we will use h to denote histories of observations. However, we note that some
centralized training algorithms make use of the full state s of the environment
during training. In these cases, we will specifically highlight where the local
observation history ht

i = (o0
i , o1

i , …, ot
i) of agent i, the joint-observation history

ht = (o0, o1, …, ot), or the state st at time step t should be used. In environments
where the full state is not available and only partial observations are accessi-
ble, the state of the environment can be approximated by the joint-observation
history st≈ ht. In fully observable environments, agents use the state s of the
environment instead of individual or joint-observation histories to make use of
the full information available to agents.

Section 8.3 discussed the application of recurrent neural networks to effi-
ciently condition deep value functions and policies on the history of observations.
These networks can receive one observation at a time and internally represent
the observation history as a hidden state. Due to this practice and for notational
brevity, many publications define the policy and value functions of deep RL
algorithms as a function conditioned only on the most recent observation. In-
stead, we will explicitly condition the policy and value function networks at
time step t on the history of local or joint observations, denoted with ht

i and ht,
respectively.

9.3 Independent Learning

In MARL, multiple agents act and learn concurrently in a shared environ-
ment. When agents perceive other agents as part of the environment and learn

“marl-book-main” — 2025/6/18 — 20:07 — page 224 — #253

224 Chapter 9

using (single-agent) RL algorithms, we consider them to be learning indepen-
dently. Despite its simplicity, independent learning is commonly used and has
been shown to perform competitively in diverse learning tasks (e.g., Gupta,
Egorov, and Kochenderfer 2017; Palmer 2020; Schroeder de Witt et al. 2020;
Papoudakis et al. 2021). In this section, we will show how to use existing deep
RL algorithms, such as those introduced in Chapter 8, to train multiple agents.

9.3.1 Independent Value-Based Learning

Independent value-based algorithms learn value functions that are conditioned
on the observations and actions of individual agents. A representative exam-
ple is the independent deep Q-networks (IDQN) algorithm, where each agent
trains its own action-value function Q(·; θi), maintains a replay buffer Di, and
only learns from its own observation history, actions, and rewards using DQN
(Section 8.1.4). The DQN loss function for each agent i is

L(θi) =
1
B

∑
(ht

i ,a
t
i ,r

t
i ,h

t+1
i)∈B

(
rt

i + γmax
ai∈Ai

Q(ht+1
i , ai; θi)−Q(ht

i, at
i; θi)

)2

(9.1)

with θi denoting the parameters of agent i’s target network. The value function
parameters are optimized simultaneously by minimizing the aggregate loss
across all agents L(θ1) +L(θ2) + … +L(θN). We also present pseudocode of the
IDQN algorithm in Algorithm 17.

It is worth noting that the replay buffer can lead to problems in IDQN that
do not occur in single-agent RL. In multi-agent environments, the behavior of
an agent is not only determined by its own actions but also influenced by the
actions of other agents in the environment. Therefore, an agent might receive
identical observation and select identical action but still receive significantly
different returns depending on the policies of other agents. This creates a
challenge when using a replay buffer, as it assumes that the stored experiences
will remain relevant over time. However, in MARL, the policies of other agents
are changing as they learn, and this can make the experiences stored in the
replay buffer quickly become outdated.

To understand the problem that can occur with off-policy algorithms like
IDQN that use a replay buffer to store experiences in multi-agent settings,
consider an example of two agents learning to play chess. Suppose agent 1 is
using a specific opening move that is initially effective against agent 2 but is
actually a weak strategy in the long run. Agent 2 has not yet learned to counter
this opening and so is not penalizing agent 1 for using it. As agent 2 learns to
counter the opening, the old opening sequences where agent 1 had success will
still be stored in the replay buffer. Agent 1 will keep learning from these old

“marl-book-main” — 2025/6/18 — 20:07 — page 225 — #254

Multi-Agent Deep Reinforcement Learning 225

Algorithm 17 Independent deep Q-networks

1: Initialize n value networks with random parameters θ1, . . . , θn

2: Initialize n target networks with parameters θ1 = θ1, . . . , θn = θn

3: Initialize a replay buffer for each agent D1, D2, . . . , Dn

4: for time step t = 0, 1, 2, . . . do
5: Collect current observations ot

1, . . . , ot
n

6: for agent i = 1, . . . , n do
7: With probability ϵ: choose random action at

i

8: Otherwise: choose at
i ∈ arg maxai

Q(ht
i, ai; θi)

9: Apply actions (at
1, …, at

n); collect rewards rt
1, …, rt

n and next observations
ot+1

1 , …, ot+1
n

10: for agent i = 1, . . . , n do
11: Store transition (ht

i, at
i, rt

i , ht+1
i) in replay buffers Di

12: Sample random mini-batch of B transitions (hk
i , ak

i , rk
i , hk+1

i) from Di

13: if sk+1 is terminal2 then
14: Targets yk

i ← rk
i

15: else
16: Targets yk

i ← rk
i + γmaxa′i ∈Ai Q(hk+1

i , a′i ; θi)

17: Loss L(θi)← 1
B

∑B
k=1

(
yk

i −Q(hk
i , ak

i ; θi)
)2

18: Update parameters θi by minimizing the loss L(θi)
19: In a set interval, update target network parameters θi

examples, even though they are no longer relevant to the current state of the
learning process, since the improved policy of agent 2 can counter those actions.
This can lead to a situation in which agent 1 continues to use the weak opening
even after it has been countered by the agent 2.

One way to address the issue of non-stationarity when using a replay buffer
in MARL is to use smaller replay buffers. As a result, the buffer will more
quickly reach its maximum capacity and older experiences will be removed.
This reduces the risk of stored experiences becoming outdated, and allows
agents to learn from recent data. However, there are also more elaborate
methods. Foerster et al. (2017) use a replay buffer that also stores importance

2. We note that agents do not observe the full state of the environment, but only their own obser-
vations. However, agents receive information about the termination of episodes, and can use this
information to compute the respective targets. For more details on how agents receive termination
information in practice, see Section 10.1.

“marl-book-main” — 2025/6/18 — 20:07 — page 226 — #255

226 Chapter 9

sampling weights for each experience. These importance sampling weights
contain the action probabilities of all agents that was used to select their actions
and serve as a snapshot of the policies of other agents at the time of collecting
the experience. Using the importance sampling weights, agents can re-weight
the experiences in the replay buffer to account for the changing policies of
other agents and, thereby, correct the non-stationarity of the data distribution.
Hysteretic Q-learning (Matignon, Laurent, and Le Fort-Piat 2007) uses a
smaller learning rate for updates, which would decrease action-value estimates.
This approach is motivated by the observation that these decreasing estimates
might be the result of the stochasticity of other agents’ policies. Similarly, the
concept of leniency (Panait, Tuyls, and Luke 2008) ignores decreasing updates
of action-value estimates with a given probability that decreases throughout
training, to account for the stochasticity of agent policies early in training. Both
concepts of hysteretic and lenient learning have been applied to deep multi-agent
RL algorithms (Omidshafiei et al. 2017; Palmer et al. 2018) and extended by
distinguishing between negative updates as a consequence of miscoordination
or stochasticity (Palmer, Savani, and Tuyls 2019).

9.3.2 Independent Policy Gradient Methods

Similarly to independent learning with value-based methods, policy gradient
methods can be independently applied in MARL. To independently train each
agent with the REINFORCE algorithm (Section 8.2.3) in multi-agent settings,
each agent maintains its own policy and learns independently from its own
experiences. The policy gradient is computed based on the agent’s own actions
and rewards, without taking into account the actions or policies of other agents.

Each agent can follow the policy gradient by computing the gradient of the
expected return with respect to its own policy parameters. At the end of every
episode, each agent updates its policy with the following policy gradient:

∇ϕi J(ϕi) =Eπ

[
ut

i
∇ϕiπ(at

i | ht
i;ϕi)

π(at
i | ht

i;ϕi)

]
=Eπ

[
ut

i∇ϕi logπ(at
i | ht

i;ϕi)
] (9.2)

This gradient updates the policy parameters in the direction in which the prob-
ability of selecting an action increases (∇ϕiπ(at

i | ht
i;ϕi)) proportional to the

agent’s returns, ut
i, with gradients being normalized by the inverse of the cur-

rent probability of selecting the action under the policy (π(at
i | ht

i;ϕi)). The
independent REINFORCE algorithm is shown in Algorithm 18.

In multi-agent settings, on-policy algorithms like REINFORCE have an
advantage over off-policy algorithms, such as IDQN, in that they always learn
from the most up-to-date policies of the other agents. This is because the

“marl-book-main” — 2025/6/18 — 20:07 — page 227 — #256

Multi-Agent Deep Reinforcement Learning 227

Algorithm 18 Independent REINFORCE

1: Initialize n policy networks with random parameters ϕ1, . . . ,ϕn

2: Repeat for every episode:
3: for time step t = 0, 1, 2, . . . , T − 1 do
4: Collect current observations ot

1, . . . , ot
n

5: for agent i = 1, . . . , n do
6: Sample actions at

i from π(· | ht
i;ϕi)

7: Apply actions (at
1, …, at

n); collect rewards rt
1, …, rt

n and next observations
ot+1

1 , …, ot+1
n

8: for agent i = 1, . . . , n do
9: Loss L(ϕi)←− 1

T

∑T−1
t=0

(∑T−1
τ=t γ

τ−trτi
)

logπ(at
i | ht

i;ϕi)
10: Update parameters ϕi by minimizing the loss L(ϕi)

policy gradient is computed based on the most recent experiences, which are
generated by the agents’ current policies. As the policies of the agents evolve
over time, the experiences collected by each agent reflect the most up-to-date
policies of the other agents in the environment. This feature of on-policy
algorithms is important in multi-agent settings because the policies of the
agents are continually evolving. Learning from the most up-to-date policies of
other agents enables each agent to adapt to changes in the environment or the
policies of the other agents, and, thus, can lead to more stable learning.

Consider again the chess example from Section 9.3.1, which discussed how
algorithms that use replay buffers may be unable to learn that an opening has
been countered by the other agent. On-policy algorithms like REINFORCE
are less susceptible to this problem because they always learn from the most
up-to-date policies of the other agents. In the chess example, as agent 2 learns
to counter the opening, the trajectories collected by agent 1 will immediately
reflect that change. In this way, on-policy algorithms can adapt more quickly to
changes in the policies of the other agents.

The A2C (Section 8.2.5) and PPO (Section 8.2.6) algorithms can also be
extended similarly to REINFORCE and be applied independently in multi-agent
settings. We now describe the independent learning algorithm for A2C with
multiple environments (Section 8.2.8). In independent A2C with parallel envi-
ronments, each agent receives experiences from multiple parallel environments.
Therefore, the collected experience across all agents and parallel environments
form batches of higher dimensionality. For example, the observations collected

“marl-book-main” — 2025/6/18 — 20:07 — page 228 — #257

228 Chapter 9

from K environments on a time step t form a two-dimensional matrix:ot,1
1 . . . ot,K

1
. . .

ot,1
n . . . ot,K

n

 (9.3)

Similar matrices can be formed for the actions and rewards. Calculating the
A2C loss requires iterating and summing over the individual losses. The policy
loss of a single agent over the data collected from an environment k becomes

L(ϕi | k) =−
(

rt,k
i + γV(ht+1,k

i ; θi)−V(ht,k
i ; θi)

)
︸ ︷︷ ︸

Advantage Adv(ht,k
i , at,k

i)

logπ(at,k
i | ht,k

i ;ϕi) (9.4)

and the final policy loss sums and averages over the batch

L(ϕ) =
1
K

∑
i∈I

K∑
k=1

L(ϕi | k) (9.5)

where i iterates over the agents and k over the environments.
The value loss also makes use of the batch by iterating over all its elements

similarly to the policy loss:

L(θi | k) =
(

yi−V(ht,k
i ; θi)

)2
with yi = rt,k

i + γV(ht+1,k
i ; θi) (9.6)

Pseudocode for independent advantage actor-critic (IA2C) is shown in Algo-
rithm 19. Independently applying PPO does not require any other considerations
and is very similar to IA2C.

9.3.3 Example: Deep Independent Learning in a Large Task

Section 5.3.2 showed how independent learning, with tabular MARL algorithms,
can learn policies in the level-based foraging environment. The level-based
foraging environment used in the experiments of that section used the same
initial state in each episode, so that the two agents and items started in the same
locations and had the same levels in all episodes. With the 11× 11 grid size,
two agents, and two items, the size of the state space can be calculated to be
42,602, which means that as many value estimates will need to be stored for
each action of any agent. While such a state space can be manageable for a
tabular algorithm, any significant increases to the space will be limited by the
algorithm’s requirement to maintain large Q-tables.

Independent learning algorithms such as IA2C make use of neural networks
to learn policies and action-value functions. The ability of neural networks to
generalize value estimates to similar states allows IA2C to handle environments

“marl-book-main” — 2025/6/18 — 20:07 — page 229 — #258

Multi-Agent Deep Reinforcement Learning 229

Algorithm 19 Independent A2C with synchronous environments

1: Initialize n actor networks with random parameters ϕ1, . . . ,ϕn

2: Initialize n critic networks with random parameters θ1, . . . , θn

3: Initialize K parallel environments
4: for time step t = 0 . . . do

5: Batch of observations for each agent and environment:

 ot,1
1 ...ot,K

1

. . .
ot,1

n ...ot,K
n


6: Sample actions

 at,1
1 ...at,K

1

. . .
at,1

n ...at,K
n

∼π(· | ht
1;ϕ1), …,π(· | ht

n;ϕn)

7: Apply actions; collect rewards

 rt,1
1 ...rt,K

1

. . .
rt,1

n ...rt,K
n

 and observations

 ot+1,1
1 ...ot+1,K

1

. . .
ot+1,1

n ...ot+1,K
n


8: for agent i = 1, . . . , n do
9: if st+1,k is terminal then

10: Advantage Adv(ht,k
i , at,k

i)← rt,k
i −V(ht,k

i ; θi)
11: Critic target yt,k

i ← rt,k
i

12: else
13: Advantage Adv(ht,k

i , at,k
i)← rt,k

i + γV(ht+1,k
i ; θi)−V(ht,k

i ; θi)
14: Critic target yt,k

i ← rt,k
i + γV(ht+1,k

i ; θi)

15: Actor loss L(ϕi)← 1
K

∑K
k=1 Adv(ht,k

i , at,k
i) logπ(at,k

i | ht,k
i ;ϕi)

16: Critic loss L(θi)← 1
K

∑K
k=1

(
yt,k

i −V(ht,k
i ; θi)

)2

17: Update parameters ϕi by minimizing the actor loss L(ϕi)
18: Update parameters θi by minimizing the critic loss L(θi)

with much larger state spaces. To demonstrate this, we train IA2C on level-
based foraging with a grid size of 15× 15, and random initial locations and
levels for the agents and items, which adheres to the open-sourced level-based
foraging environment presented in Chapter 11. This learning problem has a
state space that is many orders of magnitude larger than the tasks we explored
in Part I. Indicatively, two agents and two items in a 15× 15 grid result in
approximately five billion (5× 109) combinations.

Our experiments with IA2C on the larger level-based foraging environment
demonstrate the power of deep RL algorithms in tackling tasks with larger state
spaces. As shown in Figure 9.1(a), IA2C learned a joint policy that collects
all the available items, which is indicated by the evaluation returns reaching
values close to 1 (as detailed in Section 11.3.1). This result was reached within

“marl-book-main” — 2025/6/18 — 20:07 — page 230 — #259

230 Chapter 9

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment time steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

Independent A2C

(a) A task with two agents and two items.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment time steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

Independent A2C

(b) A task with three agents and three items.

Figure 9.1: The independent A2C (IA2C) algorithm in the level-based foraging
environment with a 15× 15 grid, and (a) two agents and two items, (b) three
agents and three items. Each episode starts with random initial locations and
levels for agents and items. IA2C used eight parallel environments, N-step
returns with N = 10, a learning rate of α= 3 · 10−4, and two neural networks
with two hidden layers of sixty-four units for the actor and critic networks. The
discount factor for the environment was set to γ = 0.99.

40,000,000 environment time steps and required approximately three hours on
typical hardware (running on an Intel i7-2700K CPU), indicating its scalability
to environments with much larger state spaces.

We extended our experiments to the case of three agents and three items
in the level-based foraging environment, which results in a state space of
approximately three hundred trillion possible states (3.6× 1014). As shown
in Figure 9.1(b), IA2C still learned to navigate the environment and collect
some of the items (a return of 0.5 signifies that on average half of the items are
collected in each episode) in less than six hours on the same hardware (Intel
i7-2700K CPU), even in the presence of multiple agents and a much larger state
space. These results highlight the potential of deep MARL algorithms, such as
IA2C, for solving complex multi-agent environments.

9.4 Multi-Agent Policy Gradient Algorithms

So far in this chapter, we discussed deep independent learning algorithms for
MARL. These algorithms extend single-agent RL algorithms with deep neural
networks for value function and policy approximation to multi-agent RL . In
Section 5.4.1, we discussed the problem of non-stationarity in RL and explained
how multi-agent learning and partial observability exacerbate it. Independent
learning suffers from this problem in particular, as each agent perceives other

“marl-book-main” — 2025/6/18 — 20:07 — page 231 — #260

Multi-Agent Deep Reinforcement Learning 231

agents as part of the environment, rendering the environment non-stationary
from each agent’s perspective. We can, however, use the CTDE paradigm
(Section 9.1.3) to mitigate the effects of non-stationarity . Under this paradigm,
agents can share information during training to stabilize learning, as long as
they are still able to execute their policies in a decentralized manner. In this
section, we will focus on how to apply CTDE to policy gradient algorithms,
where centralized training allows us to train value functions conditioned on
information of all agents. First, we extend the policy gradient theorem to multi-
agent RL, then discuss how to train centralized critics and action-value critics
conditioned on centralized information of all agents.

9.4.1 Multi-Agent Policy Gradient Theorem

The policy gradient theorem (Section 8.2.2) is the foundation of all single-
agent policy gradient RL algorithms, which define various update rules for
the parameters of a parameterized policy. As a reminder, the policy gradient
theorem states that the gradients of the quality of a parameterized policy, as
given by its expected returns, with respect to the policy parameters can be
written as follows:

∇ϕJ(ϕ)∝
∑
s∈S

Pr(s |π)
∑
a∈A

Qπ(s, a)∇ϕπ(a | s;ϕ) (9.7)

=Es∼Pr(·|π),a∼π(·|s;ϕ)
[
Qπ(s, a)∇ϕ logπ(a | s;ϕ)

]
(9.8)

To extend the policy gradient theorem to the setting of MARL, we can define
the multi-agent policy gradient theorem (Lowe et al. 2017; Foerster, Farquhar,
et al. 2018; Kuba et al. 2021; Lyu et al. 2023)3 by considering that the expected
returns of agents are dependent on the policies of all agents. Using this insight,
we can write the multi-agent policy gradient theorem for the policy of agent i
with an expectation over the policies of all agents.4 In line with notation of this
chapter, we write the multi-agent policy gradient theorem for the more general

3. We define a general variant of the multi-agent policy gradient theorem using expected returns
for partially observable environments. Related work first defined the multi-agent policy gradient
theorem using centralized critics conditioned on the joint observation of all agents (Lowe et
al. 2017) or the environment state (Foerster, Farquhar, et al. 2018). However, as we will discuss
in Section 9.4.2, using critics conditioned on agent observations or environment states rather
than observation histories with potential additional centralized information can result in bias and
increased variance of policy gradients (Kuba et al. 2021; Lyu et al. 2023).
4. The definitions for the distribution of full histories, Pr(ĥ |π), the action-value function, Qπ

i , and
the extraction of the individual agent’s history using σi(ĥ) can be found in Section 4.1.

“marl-book-main” — 2025/6/18 — 20:07 — page 232 — #261

232 Chapter 9

partially observable case using histories of information:

∇ϕi J(ϕi)∝Eĥ∼Pr(ĥ|π),ai∼πi,a−i∼π−i

[
Qπ

i (ĥ, ⟨ai, a−i⟩)∇ϕi logπi(ai | hi =σi(ĥ);ϕi)
]

(9.9)
Similar to the single-agent policy gradient theorem, the multi-agent policy

gradient theorem can be used to derive various policy gradient update rules by
estimating the expected returns in different ways. We have already seen two
instantiations of multi-agent policy gradient algorithms in the form of inde-
pendent learning policy gradient algorithms (Section 9.3.2). For independent
REINFORCE and A2C, the expected returns of agent i are estimated with
Monte Carlo estimates and an advantage estimate conditioned only on the indi-
vidual observation history and action of agent i, Adv(hi, ai)≈Qπ

i (ĥ, ⟨ai, a−i⟩),
respectively. In the following, we will focus on the CTDE paradigm and derive
estimates of the expected return that are conditioned on additional centralized
information. In particular, we will see that we can obtain more precise estimates
of expected returns when using centralized information and the actions of all
agents. We will then use these value functions to derive multi-agent policy
gradient algorithms under the CTDE paradigm.

9.4.2 Centralized Critics

To define an actor-critic algorithm under the CTDE paradigm, we have to
consider both the actor and critic networks. The actor network was previously
defined as π(ht

i;ϕi). With this definition, the actor network requires only the
local observation history of agent i to select its actions. Conditioning the actor
only on the agent’s observations ensures decentralized execution, where each
agent can independently select its actions.

However, it is important to note that during the training phase, there are no
such constraints on the critic network. In fact, once the training is completed,
the critic network is no longer utilized, and the actor alone takes charge of
generating agent actions. As a result, there is no requirement for a decentralized
critic network; it can instead be substituted with a centralized one. We call the
critic of an agent centralized if it is conditioned on any information beyond the
individual observation and action history of the agent.

For instance, we can redefine the critic as V(ht
1, …, ht

n; θi), allowing it to
condition on the observation histories of all agents while still approximating
the value of agent i’s policy. We can even incorporate information that is
inaccessible during execution, such as the full state of the environment, and
create a vector representation z that encompasses various centralized information
sources, such as the history of observations of all agents and any external data.

“marl-book-main” — 2025/6/18 — 20:07 — page 233 — #262

Multi-Agent Deep Reinforcement Learning 233

Figure 9.2: The architecture of a centralized critic for agent i. The critic is con-
ditioned on the individual agent observation history and centralized information
and outputs a single scalar to represent the approximated value.

The value loss of this centralized critic, also shown in Figure 9.2, becomes:

L(θi) =
(
yi−V(ht

i, zt; θi)
)2

with yi = rt
i + γV(ht+1

i , zt+1; θi) (9.10)

This modification offers an important benefit: the network gains access to
more information with which to make predictions. Access to such centralized
information can prove beneficial in some environments by having the critic be
more accurate in its estimation of the returns of a policy. Moreover, by having
access to information about all other agents, a centralized critic may adapt faster
to the non-stationary policies of other agents.

Lyu et al. (2023) studied centralized critics and what their inputs should con-
tain. At a minimum, the critic should be conditioned on the agent’s observation
history ht

i, which is the policy’s input. Without it, the critic may be biased
since it has less information than the actor itself, and may be unable infer the
policy it is evaluating. To illustrate this concept intuitively, we may envision a
situation involving a policy denoted as π(a | ht), a value function conditioned
on the current observation, V(ot), and a partially observable environment. In
this environment, we have a sequence of observations, o1, o2, o3, and another
sequence in which the first two observations are different, ō1, ō2, o3. Let us
assume that, in this environment, these two trajectories would lead to signifi-
cantly different outcomes for the agent in terms of expected returns. Now, if
we were to estimate the value V(o3) without considering the historical data,
it would inherently be biased. This bias emerges because V(o3) would have
to account for both potential outcomes. Conversely, the policy, conditioned
on the observation history ht, has the ability to recognize the difference in the
past observations and select the correct actions. In their work, Lyu et al. (2023)
even show that any additional information may introduce higher variance in the
policy gradient during training, without improving the theoretical convergence

“marl-book-main” — 2025/6/18 — 20:07 — page 234 — #263

234 Chapter 9

Algorithm 20 Centralized A2C with synchronous environments

1: Initialize n actor networks with random parameters ϕ1, . . . ,ϕn

2: Initialize n critic networks with random parameters θ1, . . . , θn

3: Initialize K parallel environments
4: for time step t = 0 . . . do

5: Batch of observations for each agent and environment:

 ot,1
1 ...ot,K

1

. . .
ot,1

n ...ot,K
n


6: Batch of centralized information for each environment:

[
zt,1 . . . zt,K

]
7: Sample actions

 at,1
1 ...at,K

1

. . .
at,1

n ...at,K
n

∼π(· | ht
1;ϕ1), …,π(· | ht

n;ϕn)

8: Apply actions; collect rewards

 rt,1
1 ...rt,K

1

. . .
rt,1

n ...rt,K
n

, observations

 ot+1,1
1 ...ot+1,K

1

. . .
ot+1,1

n ...ot+1,K
n

,

and centralized information
[
zt+1,1 . . . zt+1,K

]
9: for agent i = 1, . . . , n do

10: if st+1,k is terminal then
11: Adv(ht,k

i , zt,k, at,k
i)← rt,k

i −V(ht,k
i , zt,k; θi)

12: Critic target yt,k
i ← rt,k

i

13: else
14: Adv(ht,k

i , zt,k, at,k
i)← rt,k

i + γV(ht+1,k
i , zt+1,k; θi)−V(ht,k

i , zt,k; θi)
15: Critic target yt,k

i ← rt,k
i + γV(ht+1,k

i , zt+1,k; θi)

16: Actor loss L(ϕi)← 1
K

∑K
k=1 Adv(ht,k

i , zt,k, at,k
i) logπ(at,k

i | ht,k
i ;ϕi)

17: Critic loss L(θi)← 1
K

∑K
k=1

(
yt,k

i −V(ht,k
i , zt,k; θi)

)2

18: Update parameters ϕi by minimizing the actor loss L(ϕi)
19: Update parameters θi by minimizing the critic loss L(θi)

guarantees. This is because the additional information may simply add noise to
the estimation.

Nevertheless, when we examine empirical performance, particularly in the
context of deep RL, we sometimes find a beneficial trade-off when incorpo-
rating additional information zt, which may be attributed to the fact that the
theoretical assumptions behind the study of Lyu et al. (2023) do not universally
hold true in every domain. For instance, an underlying assumption is the con-
vergence of the critics to the true value functions under the current policies of
all agents. However, in the deep learning setting, this assumption might not

“marl-book-main” — 2025/6/18 — 20:07 — page 235 — #264

Multi-Agent Deep Reinforcement Learning 235

Listener

Speaker

(a) Speaker-listener game

0 1 2 3 4 5 6 7 8
Environment time steps 1e7

60

50

40

30

20

Ev
al

ua
tio

n
re

tu
rn

s
Centralised-Critic A2C
Independent A2C

(b) Training curves

Figure 9.3: Using a centralized critic with A2C for the speaker-listener game
allows the agents to learn the task by addressing the partial observability of
the environment. With the centralized critic, the algorithm converges to higher
returns than IA2C.

hold, as the critic’s training might not converge, or converge to a local minimum.
Furthermore, in practice, it has been observed (Lowe et al. 2017; Papoudakis
et al. 2021) that the centralized information, despite increasing the variance
of the policy gradient—which is thought to be detrimental to learning—can
occasionally assist agents in avoiding a local optimum. External information
may also make it easier for the critic to learn informative representations con-
ditioned on the features of zt. Finally, the introduction of bias whenever the
critic is not conditioned on the observation history assumes that the history of
observations cannot be approximated only from the last state, which might not
hold in several deterministic and fully observable environments. As a result of
these observations, a practical approach is to make use of the state history, that
is, zt = (s0, s1, …, st), in addition to the individual agent observation history, ht

i.
Any independent actor-critic RL algorithm (Section 9.3.2) can be instantiated

with a centralized critic to learn a value function in MARL. Algorithm 20
presents pseudocode for the centralized A2C algorithm, which can be seen as
multi-agent A2C with a centralized critic.

A centralized critic can occasionally lead to more robust learning in some
environments. Consider the speaker-listener game shown in Figure 9.3(a) (see
also Section 11.3.2 for more information). This is a common-reward game, in
which two agents need to cooperate to reach their goals. One agent, the listener,
is placed in the environment and can observe its location and that of three
distinct landmarks (shapes in Figure 9.3(a)). The other agent, the speaker, can

“marl-book-main” — 2025/6/18 — 20:07 — page 236 — #265

236 Chapter 9

only observe the shape of the landmark that will maximize the common reward
and can transmit an integer from 1 to 3 to the listener. The goal of the game is for
the two agents to learn to cooperate such that the listener always moves to the
goal landmark. Given the partial observability, this game is quite challenging:
the speaker has to learn to recognize the different shapes and transmit a distinct
message long enough for the listener to learn to move to the correct landmark.
Conditioning the critic of each agent on the observations of both agents (the
landmark goal and the positions of the agent and landmarks) allows them to
learn more precise value estimates despite the partial observability, and leads to
the performance advantages seen in Figure 9.3(b).

9.4.3 Centralized Action-Value Critics

As we have seen in Figure 9.3(b), a centralized critic conditioned on the history
ht

i and on external information zt can stabilize the training of multi-agent actor-
critic algorithms, particularly in partially observable multi-agent environments.
However, it can be desirable to learn action-value functions as critics instead.
These value functions condition their value estimation not just on the history and
centralized information but also on the actions of agents. To train a centralized
action-value critic for multi-agent actor-critic algorithms, similar to the setting
described in Section 9.4.2, each agent i trains a policy πi which is conditioned
on agent i’s observation history. For the critic, agent i trains an action-value
function Q that is conditioned on the individual observation history, centralized
information, and the actions of all agents. We can instantiate this idea by
training the centralized critic to minimize the following value loss:

L(θi) =
(
yi−Q(ht

i, zt, at; θi)
)2

with yi = rt
i + γQ(ht+1

i , zt+1, at+1; θi) (9.11)

For this loss, we compute the target value yi for agent i using the individual
observation history ht

i, additional centralized information zt, and the next actions
applied by all agents at, similar to the on-policy Sarsa algorithm (Equation 2.53,
page 33). Using the critic, we can define the policy loss for agent i as:

L(ϕi) =−Q(ht
i, zt, at; θi) logπ(at

i | ht
i;ϕi) (9.12)

Using the centralized critic, the multi-agent policy gradient for agent i is
given by:

∇ϕi J(ϕi) =Eat∼π

[
Q(ht

i, zt, ⟨at
i, at

−i⟩; θi)∇ϕi logπi(at
i | ht

i;ϕi)
]

(9.13)

We have previously seen action-value functions in value-based RL algorithms
like DQN. These algorithms optimize their value function with bootstrapped
targets using the max-operator over the action in the next state, and use batches
of experiences sampled from a replay buffer. To understand why we do not

“marl-book-main” — 2025/6/18 — 20:07 — page 237 — #266

Multi-Agent Deep Reinforcement Learning 237

Figure 9.4: The architecture of a centralized action-value critic for agent i. The
critic is conditioned on the individual observation history, additional centralized
information, and the actions of all other agents. The network outputs a single
scalar for every action of agent i to represent the approximated value for the
respective joint actions.

use these techniques to train the action-value critic for multi-agent actor-critic
algorithms, recall that the multi-agent policy gradient theorem requires the
estimation of the expected returns under the current policies of all agents. To
train the critic to estimate the expected returns under the current policies of
all agents, we have to use on-policy data. In contrast, a replay buffer contains
off-policy data that may not represent the distribution of experiences under the
current policies. Likewise, DQN directly updates the critic to approximate the
optimal returns instead of the expected returns under the current policies.

To represent a centralized action-value critic as a neural network, the network
might take the individual observation history and centralized information as
inputs and output one action-value for each joint action. However, this network
architecture would suffer from large dimensionality of the output due to the
exponential growth of the joint-action space with the number of agents. To
avoid such a large output dimension, we can instead model the action-value
critic of agent i to receive the actions a−i of all other agents as additional
inputs. Then, the network only computes a single output for each action of
agent i that corresponds to the action-value for the given individual observation
history ht

i, additional centralized information zt, and the joint action composed
by concatenating the particular action of agent i, ai, with the joint action of all
other agents, a−i. This architecture is illustrated in Figure 9.4.

9.4.4 Counterfactual Action-Value Estimation

In Section 9.4.3, we trained a centralized action-value critic, Q(hi, z, a; θi), in-
stead of a centralized value function, V(hi, z; θi). The motivation for training

“marl-book-main” — 2025/6/18 — 20:07 — page 238 — #267

238 Chapter 9

an action-value function is its ability to directly estimate the impact of the
action selection on the expected returns. However, a value function without
action inputs, V(hi, z; θi), can still be used to approximate the advantage (Equa-
tion 8.34), which also provides preferences over particular actions. Additionally,
training an action-value function with one output for every possible action may
be more difficult than training a function with only a single output. Given these
considerations, why would we want to train action-value critics for multi-agent
actor-critic algorithms, instead of learning simpler critics only conditioned on
the agent observation history hi and potential centralized information z?

One motivation for training action-value critics is to use their action inputs to
address the multi-agent credit assignment problem, discussed in Section 5.4.3,
based on the concept of difference rewards (Wolpert and Tumer 2002; Tumer
and Agogino 2007). Difference rewards approximate the difference between
the received reward, and the reward agent i would have received if it had chosen
a different action ãi:

di =Ri(s, ⟨ai, a−i⟩)−Ri(s, ⟨ãi, a−i⟩) (9.14)

The action ãi is also referred to as the default action. Difference rewards aim
to consider the counterfactual question of “Which reward would agent i have
received if it instead had selected its default action?”. Answering this question
is valuable in settings where all agents receive a common reward, because it
provides information about the concrete contribution of agent i to the received
reward. However, computing difference rewards in practice is often difficult
because (1) it is not clear how to select the default action for agent i, and (2)
computingRi(s, ⟨ãi, a−i⟩) requires access to the reward function. The need to
determine a default action for each agent can be avoided by using the definition
of the aristocrat utility. Instead of the reward agent i would have received if
they had selected their default action, we subtract the expected rewards agent i
would have received if they had followed their current policy:

di =Ri(s, ⟨ai, a−i⟩)−Ea′i ∼πi

[
Ri(s, ⟨a′i , a−i⟩)

]
(9.15)

In this way, the aristocrat utility can be seen as the expected difference reward
where the default action is sampled from the current policy. Intuitively, the
aristocrat utility provides an indication of whether action ai is expected to lead
to better or worse rewards in expectation than sampling an action from the
current policy.

Given access to the reward function, Castellini et al. (2021) derive return
estimates over difference rewards determined by the aristocrat utility, and incor-
porate these return estimates into the REINFORCE algorithm for MARL. If the
reward function is not available, they propose to learn a model of the reward

“marl-book-main” — 2025/6/18 — 20:07 — page 239 — #268

Multi-Agent Deep Reinforcement Learning 239

function from experience in the environment, and use this model to estimate
the difference rewards.

Counterfactual multi-agent policy gradient (COMA) (Foerster, Farquhar,
et al. 2018) uses the same concepts to derive a centralized action-value critic5 to
compute a counterfactual baseline, which marginalizes out the action of agent
i to estimate the advantage for selecting action ai over following the current
policy:

Advi(hi, z, a) = Q(hi, z, a; θ)−
∑
a′i ∈Ai

π(a′i | hi;ϕi)Q(hi, z, ⟨a′
i , a−i⟩; θ)

︸ ︷︷ ︸
counterfactual baseline

(9.16)

This advantage estimate looks similar to the one defined in Equation 8.34
(page 205), but the baseline is computed based on the aristocrat utility instead
of a value function V . The counterfactual baseline computes the expected
centralized value estimate for agent i for following its own policy, π(a′

i , hi;ϕi),
and with the actions of other actions, a−i, being fixed. This baseline is shown
to not change the multi-agent policy gradient (Equation 9.9) in expectation, and
can efficiently be computed using the previously introduced architecture for
centralized action-value critics (Figure 9.4). To train the policy of agent i in
COMA, the action-value estimate in Equation 9.12 is replaced by the advantage
estimate in Equation 9.16. Despite its clear motivation, COMA empirically
suffers from high variance in its baseline (Kuba et al. 2021) and inconsistent
value estimates (Vasilev et al. 2021), which result in unstable training that can
lead to poor performance (Papoudakis et al. 2021).

9.4.5 Equilibrium Selection with Centralized Action-Value Critics

A centralized action-value critic offers flexibility when computing the advan-
tage. Christianos, Papoudakis, and Albrecht (2023) alter the definition of the
advantage term to guide the learning agents to a Pareto-optimal equilibrium
(Section 4.8) in no-conflict games. No-conflict games are a class of games
where all agents agree on the most-preferred outcome. Formally, a game is
no-conflict if:

arg max
π

Ui(π) = arg max
π

Uj(π) ∀i, j∈ I (9.17)

An example is the Stag Hunt game (Figure 9.5(a)), which is a no-conflict
game with two agents and was previously discussed in Section 5.4.2 (the full list
of 2× 2 no-conflict matrix games can be found Section 11.2). In the Stag Hunt

5. In their original work, Foerster, Farquhar, et al. (2018) condition the critic only on the full state of
the environment and the joint action of all agents. As discussed in Section 9.4.2, the critic should be
additionally conditioned on the individual observation history to obtain an unbiased policy gradient.

“marl-book-main” — 2025/6/18 — 20:07 — page 240 — #269

240 Chapter 9

A B
A 4,4‡ 0,3
B 3,0 2,2†

(a) Stag Hunt game

A B C
A 11‡ -30 0
B -30 7† 0
C 0 6 5

(b) Climbing game

Figure 9.5: (a) The Stag Hunt matrix game, also seen in Section 5.4.2. (b) The
Climbing matrix game. The Climbing game is a common-reward (which is
always no-conflict) game that shares similar characteristics to the Stag Hunt
game: an optimal Nash equilibrium and joint actions that are less rewarding but
are easier to reach. The Pareto-dominated equilibrium is denoted with † and the
Pareto-optimal one with ‡.

game, both agents prefer the outcome (A, A), making it no-conflict, although
they disagree on the second-best outcome: (B, A) for agent 1 and (A, B) for
agent 2. These two joint actions do not represent Nash equilibria, however, since
agents can unilaterally change their actions to improve their rewards. Finally,
action (B,B) is a Nash equilibrium since an agent changing its action (with the
other agent not doing so) decreases its reward.

When such games have multiple Nash equilibria, learning agents tend to
converge to less risky equilibria by preferring less risky actions (Papoudakis
et al. 2021). In the Stag Hunt example, agents selecting action B are guaranteed
a reward of at least 2, while action A might lead to a reward of 0. Therefore,
even if the highest reward can only be achieved by choosing action A, the
agents tend to learn the suboptimal (B, B) solution. This preference is easy to
illustrate for agents that do not model the actions of the other agents. Suppose
the two agents are initialized with a uniform random policy, π(A) =π(B) = 0.5,
before learning starts. At that moment, the expected reward of choosing action
A for agent 1 is 0.5 · 4 + 0.5 · 0 = 2.0 and for action B the expected reward is
0.5 · 3 + 0.5 · 2 = 2.5 (where 0.5 is the probability of the other agent selecting
A or B). Consequently, when applying the policy gradient, agent 1 learns to
assign a greater probability to action B. This reinforcement further strengthens
the risk-averse (B, B) equilibrium through a positive feedback loop, making
action A even less appealing for agent 2.

Pareto actor-critic (Pareto-AC) (Christianos, Papoudakis, and Albrecht 2023)
is a method of addressing this problem that builds on the multi-agent policy
gradient methods discussed in Sections 9.3.2, 9.4.2, and 9.4.4. Pareto-AC ad-
dresses the equilibrium selection problem in no-conflict games by incorporating
into the policy gradient the fact that other agents have the same most preferred

“marl-book-main” — 2025/6/18 — 20:07 — page 241 — #270

Multi-Agent Deep Reinforcement Learning 241

outcome. In no-conflict games, a joint policy that satisfies the most preferred
outcome for an agent is Pareto-optimal (Equation 4.25), as that joint policy by
definition has the highest expected returns for all agents. For the training of
agent i following policy πi, the algorithm assumes that all other agents follow a
policy π+

−i that is in the set of policies that maximize the returns of agent i, that
is:

π+
−i ∈ arg max

π−i

Ui(πi,π−i) (9.18)

Using π+
−i, the original Nash equilibrium objective (Equation 4.16) can be

changed to
πi ∈ arg max

πi

Ui(πi,π+
−i), (9.19)

which, following the actor-critic methodology, can be optimized by minimizing
the following loss where the actions at

−i of other agents are drawn from π+
−i:

L(ϕi) =−Eat
i∼πi,at

−i∼π+
−i

[
logπ(at

i | ht
i;ϕi)(

Qπ+
(ht

i, zt, ⟨at
i, at

−i⟩; θq
i)−Vπ+

(ht
i, zt; θv

i)
)]

(9.20)

Equation 9.20 uses centralized critics conditioned on additional information
zt as discussed in Section 9.4.2. During training, π+

−i can be computed by
calculating the maximum over the actions of the other agents using a joint-action
value function:

π+
−i ∈ arg max

a−i
Q(ht

i, zt, ⟨at
i, a−i⟩) (9.21)

However, as with any algorithm that uses a joint-action value function, this
calculation has unattractive scaling properties as the number of agents increases.
This issue is even more pronounced in the context of Pareto-AC, where the
explicit iteration over the joint actions of other agents necessitates tractable
approximations, a challenge that remains unresolved.

With Pareto-AC, agents tend to converge to more rewarding equilibria in
no-conflict games, even if the equilibria are riskier. We show experiments in
two environments to illustrate the difference between Pareto-AC and centralized
A2C. First, in Figure 9.6(a), Pareto-AC is shown to converge to the Pareto-
optimal equilibrium (A, A) in the Climbing game (Figure 9.5(b)) while the
A2C algorithm with a centralized value function only converges to action (B,B),
which is a suboptimal solution for both agents. However, matrix games are
not the only situation in which this problem appears. Take the example of
level-based foraging (Section 5.4.3) with two agents and an item that always
needs both agents to cooperate to collect it. In addition, apply a penalty (−0.6
in this example) if an agent attempts to collect an item alone and fails. Such a
game has a suboptimal equilibrium of never trying to collect items in order to

“marl-book-main” — 2025/6/18 — 20:07 — page 242 — #271

242 Chapter 9

0 100000 200000 300000 400000 500000
Environment time steps

10

5

0

5

10

15

20

Ev
al

ua
tio

n
re

tu
rn

s

Pareto-AC
Centralised A2C

(a) Learning curves on the Climbing game.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment time steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

Pareto-AC
Centralised A2C

(b) Learning curves on the level-based for-
aging game (with penalty).

Figure 9.6: Learning curves comparing centralized A2C with Pareto-AC in the
Climbing and level-based foraging games.

avoid getting penalized. In Figure 9.6(b), we can see the results of Pareto-AC
and a centralized A2C algorithm in level-based foraging with two agents that
always need to cooperate to collect an item that has been placed on a 5× 5
grid. Centralized A2C quickly learns to avoid collecting the item so as to
not receive any penalties. In contrast, Pareto-AC is optimistic by using the
centralized action-value critic and the modified policy objective (Equation 9.20)
and eventually learns to solve the task.

Pareto-AC is an example of how a centralized action-value function can be
used to improve learning in multi-agent problems. The centralized action-value
function is not only used to learn a joint-action value but also to guide the policy
gradient to the most promising equilibria. With its decentralized actors, which
are only conditioned on the observations, the algorithm adheres to the CTDE
paradigm, enabling the individual agents to execute their actions independently
during execution.

9.5 Value Decomposition in Common-Reward Games

As we have seen in Section 9.4, centralized value functions can be used to ad-
dress or mitigate several challenges in MARL, such as non-stationarity, partial
observability (Section 9.4.2), multi-agent credit assignment (Section 9.4.4), and
equilibrium selection (Section 9.4.5). However, there are several challenges in
training and applying centralized value functions. First, it can be difficult to
learn centralized value functions. In particular, centralized action-value func-
tions are difficult to learn due to the exponential growth of the joint-action space
with the number of agents. Second, centralized value functions by themselves

“marl-book-main” — 2025/6/18 — 20:07 — page 243 — #272

Multi-Agent Deep Reinforcement Learning 243

do not enable agents to select actions in a decentralized and efficient manner.
Even if centralized information is available, selecting the greedy actions with
respect to a centralized action-value function is computationally costly due to
the large joint-action space. In Section 9.4, we circumvented these challenges
and enabled decentralized and efficient action selection by training additional
policy networks whenever using centralized value functions. In this section,
we will discuss an alternative approach to learning centralized value functions,
which enables efficient training and decentralized execution without relying on
additional policy networks.

There is a long history of research on how value functions can be factorized to
facilitate learning them. Crites and Barto (1998) employed independent learners
that attempt to learn Qi(s, ai)≈Q(s, a). However, it soon became evident that
the underlying joint-action value function can be difficult to learn and cannot
be approximated as easily. A key observation that helped simplify the problem
was that not all agents interact with each other, and the interacting agents could
be represented as a graph, known as a coordination graph (Guestrin, Koller,
and Parr 2001; Guestrin, Lagoudakis, and Parr 2002; Kok and Vlassis 2005).
The sparsity of the coordination graph can be exploited to approximate the
joint-action value as the sum of the values of interacting agents, which can be
easier to estimate. In the coordination graph example shown in Figure 9.7, in
which two agents interact with a third agent but not with each other, the joint-
action value Q(s, ⟨a1, a2, a3⟩)) can be approximated as the sum Q(s, ⟨a1, a2⟩) +
Q(s, ⟨a1, a3⟩). Numerous studies have since explored approaches to learning
near-exact (Oliehoek, Witwicki, and Kaelbling 2012) or approximate (Oliehoek
2010; Oliehoek, Whiteson, and Spaan 2013) versions of these value functions
and applied these methods to the deep RL setting (van der Pol 2016; Böhmer,
Kurin, and Whiteson 2020).

In this section, we will discuss more recent methods that have been successful
at learning factored action-value functions in common-reward games using deep
learning. In these games, all agents share the same objective in the form of
their reward functions, that is, Ri =Rj for all i, j∈ I, and can benefit from
a centralized value function that accurately estimates the expected returns
over the common rewards. The centralized action-value function Q(h, z, a; θ),
conditioned on the joint history h, potential centralized information z, and joint
action a can be written as

Q(ht, zt, at; θ) =E

[∞∑
τ=t

γτ−trτ
∣∣ ht, zt, at

]
(9.22)

where rτ denotes the common reward at time step τ .

“marl-book-main” — 2025/6/18 — 20:07 — page 244 — #273

244 Chapter 9

1

2

3

Figure 9.7: An example of a simple coordination graph. Each node represents
an agent, and each edge connects agents that interact with each other. In this
example, agent 1 interacts with agent 2 and agent 3. However, agent 2 and agent
3 do not interact with each other.

Value decomposition algorithms decompose this centralized action-value
function into simpler functions that can be learned more efficiently and enable
decentralized execution. One natural way is to learn individual utility functions
for each agent. The utility function of agent i, written as Q(hi, ai; θi), is condi-
tioned only on the individual observation history and action of the agent. Similar
to individual action-value functions, agents can use these functions to efficiently
select their greedy actions. We refer to these functions as utility rather than
value functions because they are not optimized to approximate the expected
returns of their respective agents. Instead, the utility functions of all agents are
jointly optimized to approximate the centralized action-value function.

In this section, we will discuss how agents can efficiently learn and use
such individual utility functions to jointly approximate the centralized action-
value function in common-reward games, select actions, and understand their
contribution to common rewards.

9.5.1 Individual-Global-Max Property

To ensure that decentralized action selection with respect to individual agent
utilities leads to effective joint actions, we introduce the individual-global-max
(IGM) property (Rashid et al. 2018; Son et al. 2019). Intuitively, the IGM
property states that the greedy joint actions with respect to the centralized
action-value function should be equal to the joint actions composed of the
greedy individual actions of all agents that maximize the respective individual
utilities. To formally define the IGM property, we first define the sets of greedy
actions with respect to a decomposed centralized action-value function and the

“marl-book-main” — 2025/6/18 — 20:07 — page 245 — #274

Multi-Agent Deep Reinforcement Learning 245

individual utility function of agent i, respectively,

A∗(h, z; θ) = arg max
a∈A

Q(h, z, a; θ) (9.23)

A∗
i (hi; θi) = arg max

ai∈Ai

Q(hi, ai; θi) (9.24)

with Q(h, z, a; θ) and Q(hi, ai; θi) denoting the centralized action-value function
and individual utility function of agent i, respectively.

The IGM property6 is satisfied if the following holds for all full histories
ĥ with joint-observation histories h =σ(ĥ), individual observation histories,
hi =σi(ĥ), and centralized information z:7

∀a = (a1, …, an)∈A : a∈A∗(h, z; θ) ⇐⇒ ∀i∈ I : ai ∈A∗
i (hi; θi) (9.25)

The IGM property has two important implications for a value decomposition.
First, each agent can follow the greedy policy with respect to its individual
utility function for decentralized execution, and all agents together will select
the greedy joint action with respect to the decomposed centralized action-value
function. Second, the greedy joint action with respect to the decomposed
centralized action-value function, needed to compute the target value during
training, can be efficiently obtained by computing the greedy individual actions
of all agents with respect to their individual utility. If the individual utility
functions satisfy the IGM property for the centralized action-value function, we
also say that the utility functions factorize the centralized value function.

Besides providing an easier-to-learn decomposition of the centralized action-
value function and enabling decentralized execution, the individual utilities
learned by value decomposition algorithms can provide an estimate for the
contribution of each agent to the common reward. This is because the individual
utility functions are jointly optimized to approximate the centralized action-
value function in aggregation, and individually are only conditioned on the
local observation history and action of their corresponding agent. Hence, if an
agent contributed to the common reward with its action, then its utility should
approximate such contribution. In this way, value decomposition can address

6. The IGM property was first defined by Son et al. (2019). Previously, Rashid et al. (2018)
introduced the term consistency following an almost identical definition. However, prior work
typically defines the IGM property as the equivalence of the greedy joint action with respect to
Q(h, z, a; θ) and the joint action of the individually greedy actions. These definitions disregard the
possibility that there could be multiple greedy actions and, thus, we define the IGM property as
the equivalence of the greedy joint action with respect to Q(h, z, a; θ) and the joint action of the
individually greedy actions that maximize the joint-action value function.
7. Recall from Section 4.1 that a full history ĥ contains the history of states, joint observations, and
joint rewards; σ(ĥ) returns the history of joint observations within full history ĥ; z could for example
include the last state in the history denoted with s(ĥ). We use σi(ĥ) to denote the observation history
of agent i.

“marl-book-main” — 2025/6/18 — 20:07 — page 246 — #275

246 Chapter 9

the multi-agent credit assignment problem (Section 5.4.3), similarly to the
counterfactual action-value estimation seen in Section 9.4.4.

Lastly, it is important to note that for some environments there may exist no
decomposition that satisfies the IGM property. Particularly in environments
with partial observability, individual agent utility functions might lack important
information to discriminate between joint histories with different action values.
However, in many cases, the IGM property can be satisfied by a suitable
decomposition of the centralized action-value function, or a decomposition may
be learned that is able to identify effective joint actions across many (if not all)
histories.

9.5.2 Linear Value Decomposition

A simple method of decomposing Q(h, z, a; θ) that satisfies the IGM property is
to assume a linear decomposition of common rewards, that is, the sum of the
individual utilities of agents equals the common reward

rt = r̄t
1 + · · ·+ r̄t

n (9.26)

where r̄t
i denotes the utility of agent i at time step t. The bar over the reward

symbol denotes that these utilities are obtained by the decomposition, and do not
represent true rewards received by the environment. Using this assumption, the
centralized action-value function of agents can be decomposed as follows, with
the expectation being defined over the probability distribution of full histories
ĥt defined in Equation 4.3 (page 64):

Q(ht, zt, at; θ) =Eĥt∼Pr(·|π)

[∞∑
τ=t

γτ−trτ
∣∣ ht =σ(ĥt), zt, at

]
(9.27)

=Eĥt∼Pr(·|π)

[∞∑
τ=t

γτ−t

(∑
i∈I

r̄τi

)∣∣ ht, zt, at

]
(9.28)

=
∑
i∈I

Eĥt∼Pr(·|π)

[∞∑
τ=t

γτ−t r̄τi
∣∣ ht, zt, at

]
(9.29)

=
∑
i∈I

Q(ht
i, at

i; θi) (9.30)

Any such linear decomposition satisfies the IGM property (Equation 9.25),
as we will show below:

Proof. Let ĥ be a full history, h =σ(ĥ) be the joint-observation history, hi =σi(ĥ)
be the observation history of agent i, and z denote potential additional centralized

“marl-book-main” — 2025/6/18 — 20:07 — page 247 — #276

Multi-Agent Deep Reinforcement Learning 247

information. We will first prove that for any greedy joint action a∗ ∈A∗(h, z; θ),
the individual actions in a∗ of all agents are also greedy with respect to their
individual utility functions. Then, we will show that any greedy individual
actions of all agents together represent a greedy joint action with respect to
Q(h, z, a; θ).

"⇒" Let a∗ = (a∗1 , …, a∗n)∈A∗(h, z; θ) be a greedy joint action with respect to
Q(h, z, ·; θ). To prove that the individual actions of all agents a∗1 , …, a∗n are
also greedy with respect to agents’ individual utility functions, that is,

∀i∈ I : a∗
i ∈A∗

i (hi; θi), (9.31)

we need to show that for any agent i and any action ai ∈Ai, we have

∀i∈ I : Q(hi, a∗i ; θi)≥Q(hi, ai; θi). (9.32)

We will prove this by contradiction. Assume that there exists an agent i and
an action ai ∈Ai such that

Q(hi, a∗
i ; θi) < Q(hi, ai; θi). (9.33)

Given the linear decomposition of Q(h, z, a; θ), we have

Q(h, z, a∗; θ) =
∑
i∈I

Q(hi, a∗i ; θi) (9.34)

= Q(hi, a∗i ; θi) +
∑
j ̸=i

Q(hj, a∗j ; θj) (9.35)

< Q(hi, ai; θi) +
∑
j ̸=i

Q(hj, a∗
j ; θj) (9.36)

= Q(h, z, ⟨ai, a∗−i⟩; θ) (9.37)

which contradicts the assumption that a∗ is a greedy joint action with
respect to Q(h, z, a; θ). Therefore, Equation 9.33 cannot hold, and thus,
Equation 9.32 must be true and the individual actions of all agents within
the greedy joint action a∗ are also greedy with respect to their individual
utility functions.

"⇐" Let a∗
1 ∈A∗

1 (h1; θ1), …, a∗
n ∈A∗

n (hn; θn) be greedy individual actions of
all agents with respect to their individual utility functions. Let a∗ =
(a∗

1 , …, a∗
n) be the joint action composed of such greedy individual ac-

tions of all agents. To prove that a∗ is a greedy joint action with respect
to Q(h, z, a; θ), we need to show that for any joint action a′ ∈A(h, z; θ), we
have

Q(h, z, a∗; θ)≥Q(h, z, a′; θ). (9.38)

“marl-book-main” — 2025/6/18 — 20:07 — page 248 — #277

248 Chapter 9

Given the linear decomposition of the centralized action-value function, we
have

Q(h, z, a∗; θ) =
∑
i∈I

Q(hi, a∗i ; θi) (9.39)

=
∑
i∈I

max
ai∈Ai

Q(hi, ai; θi) (9.40)

≥
∑
i∈I

Q(hi, a′i ; θi) (9.41)

= Q(h, z, a′; θ) (9.42)

where a′ = (a′
1, …, a′

n) is any joint action composed of arbitrary individual
actions a′

1 ∈A1, …, a′
n ∈An. Therefore, a∗ is a greedy joint action with

respect to Q(h, z, a; θ) (Equation 9.38).

This concludes the proof.

The introduced linear decomposition8 defines the approach of value decom-
position networks (VDN) (Sunehag et al. 2018). VDN maintains a replay buffer
D containing the experience of all agents and jointly optimizes the loss de-
fined in Equation 9.43 over the approximate centralized value function for all
agents. The loss is computed over a batch B sampled from the replay buffer
and propagates its optimization objective through the individual utilities of all
agents

L(θ) =
1
B

∑
(ht ,at ,rt ,ht+1)∈B

(
rt + γmax

a∈A
Q(ht+1, a; θ̄)−Q(ht, at; θ)

)2

(9.43)

with

Q(ht, at; θ) =
∑
i∈I

Q(ht
i, at

i; θi) and (9.44)

max
a∈A

Q(ht+1, a; θ̄) =
∑
i∈I

max
ai∈Ai

Q(ht+1
i , ai; θ̄i). (9.45)

Using this optimization objective, all agents implicitly learn their indi-
vidual utility functions. These functions are computationally tractable and
naturally gives rise to policies with agent i choosing the greedy action with
respect to its individual utility function for any given history, that is, at

i =
arg maxai∈Ai

Q(ht
i, ai; θi). Note that no constraints are imposed on the individual

utility functions and only the shared rewards are used during the optimization.

8. An observant reader may have noticed that this decomposition is simply a disconnected
coordination graph (Figure 9.7).

“marl-book-main” — 2025/6/18 — 20:07 — page 249 — #278

Multi-Agent Deep Reinforcement Learning 249

Algorithm 21 Value decomposition networks (VDN)

1: Initialize n utility networks with random parameters θ1, . . . , θn

2: Initialize n target networks with parameters θ1 = θ1, . . . , θn = θn

3: Initialize a shared replay buffer D
4: for time step t = 0, 1, 2, . . . do
5: Collect current observations ot

1, . . . , ot
n

6: for agent i = 1, . . . , n do
7: With probability ϵ: choose random action at

i

8: Otherwise: choose at
i ∈ arg maxai

Q(ht
i, ai; θi)

9: Apply actions; collect shared reward rt and next observations ot+1
1 , …, ot+1

n

10: Store transition (ht, at, rt, ht+1) in shared replay buffer D
11: Sample mini-batch of B transitions (hk, ak, rk, hk+1) from D
12: if sk+1 is terminal then
13: Targets yk← rk

14: else
15: Targets yk← rk + γ

∑
i∈I maxa′i ∈Ai Q(hk+1

i , a′
i ; θi)

16: Loss L(θ)← 1
B

∑B
k=1

(
yk−∑i∈I Q(hk

i , ak
i ; θi)

)2

17: Update parameters θ by minimizing the loss L(θ)
18: In a set interval, update target network parameters θi for each agent i

Figure 9.8(a) illustrates the architecture of VDN. Algorithm 21 shows pseu-
docode for VDN, which follows the same structure as IDQN (Algorithm 17)
but optimizes the common loss given in Equation 9.43. It is worth noting that
VDN can benefit from any of the implementation tricks or optimizations that
can be applied to IDQN mentioned in Section 9.3.1.

9.5.3 Monotonic Value Decomposition

While the linear decomposition assumed by VDN is natural and simple, it is
not necessarily realistic. In many cases, the contribution of agents might be
better represented by a non-linear relation, which VDN is unable to capture.
Various approaches have been proposed to represent non-linear decompositions
of rewards and value functions, with QMIX (Rashid et al. 2018) being a widely
adopted approach. QMIX builds on the observation that the IGM property can
be ensured if (strict) monotonicity of the centralized action-value function with
respect to individual utilities holds, that is, the derivative of the centralized

“marl-book-main” — 2025/6/18 — 20:07 — page 250 — #279

250 Chapter 9

+

(a) VDN (b) QMIX

Figure 9.8: The network architecture of VDN and QMIX. Given the observation
histories, the individual utility networks output utility values for all actions of
the respective agents. For VDN, the centralized action-value function is then
approximated by the sum of the individual utilities for the chosen actions. For
QMIX, the centralized action-value function is approximated by a monotonic
aggregation computed by the mixing network, which is parameterized by the
output of a trained hypernetwork.

action-value function with respect to agent utilities is positive:

∀i∈ I,∀a∈A :
∂Q(h, z, a; θ)
∂Q(hi, ai; θi)

> 0 (9.46)

Intuitively, this means that an increase in the utility of any agent i for its action
ai must lead to an increase in the decomposed centralized action-value function
for joint actions containing ai.

Similar to VDN, QMIX builds on top of IDQN and represents each agent’s
individual utility function as a deep Q-network. In order to be able to represent
any monotonic decomposition of the centralized action-value function into these
individual utilities, QMIX defines a mixing network fmix given by a feedforward
neural network that combines individual utilities to approximate the centralized
action-value function:

Q(h, z, a, θ) = fmix (Q(h1, a1; θ1), …, Q(hn, an; θn); θmix) (9.47)

This decomposition ensures the monotonicity property from Equation 9.46 if
the mixing function is monotonic with respect to the utilities of all agents.

The monotonic decomposition of QMIX is a sufficient condition to ensure
the IGM property. We can prove this similarly to the previous proof for a linear
decomposition.

“marl-book-main” — 2025/6/18 — 20:07 — page 251 — #280

Multi-Agent Deep Reinforcement Learning 251

Proof. Let ĥ be a full history, h =σ(ĥ) be the joint-observation history, hi =σi(ĥ)
be the observation history of agent i, and z denote potential additional centralized
information. We will first prove that for any greedy joint action a∗ ∈A∗(h, z; θ),
the individual actions in a∗ of all agents are also greedy with respect to their
individual utility functions. Then, we will show that any greedy individual
actions of all agents together represent a greedy joint action with respect to
Q(h, z, a; θ).

"⇒" Let a∗ = (a∗1 , …, a∗n)∈A∗(h, z; θ) be a greedy joint action with respect to
Q(h, z, ·; θ). To prove that the individual actions of all agents a∗1 , …, a∗n are
also greedy with respect to agents’ individual utility functions, that is,

∀i∈ I : a∗
i ∈A∗

i (hi; θi), (9.48)

we need to show that for any agent i and any action ai ∈Ai, we have

∀i∈ I : Q(hi, a∗i ; θi)≥Q(hi, ai; θi). (9.49)

We will prove this by contradiction. Assume that there exists an agent i and
an action ai ∈Ai such that

Q(hi, a∗
i ; θi) < Q(hi, ai; θi). (9.50)

Given the monotonic decomposition of Q(h, z, a; θ), we have

Q(h, z, a∗; θ) (9.51)

= fmix
(
Q(h1, a∗

1 ; θ1), …, Q(hi, a∗
i ; θi), …, Q(hn, a∗n ; θn); θmix

)
(9.52)

< fmix
(
Q(h1, a∗

1 ; θ1), …, Q(hi, ai; θi), …, Q(hn, a∗
n ; θn); θmix

)
(9.53)

= Q(h, z, ⟨a∗−i, ai⟩; θ) (9.54)

where the inequality follows from Equation 9.50 and the monotonicity
of fmix with respect to its inputs (Equation 9.46). This contradicts the
assumption that a∗ is a greedy joint action with respect to Q(h, z, a; θ).
Therefore, Equation 9.50 cannot hold, and we have Equation 9.49, so the
individual actions of all agents within the greedy joint action a∗ are also
greedy with respect to their individual utility functions.

"⇐" Let a∗
1 ∈A∗

1 (h1; θ1), …, a∗
n ∈A∗

n (hn; θn) be greedy individual actions of
all agents with respect to their individual utility functions. Let a∗ =
(a∗

1 , …, a∗
n) be the joint action composed of such greedy individual ac-

tions of all agents. To prove that a∗ is a greedy joint action with respect
to Q(h, z, a; θ), we need to show that for any joint action a′ ∈A(h, z; θ), we
have

Q(h, z, a∗; θ)≥Q(h, z, a′; θ). (9.55)

“marl-book-main” — 2025/6/18 — 20:07 — page 252 — #281

252 Chapter 9

Given the monotonic decomposition of Q(h, z, a; θ), we have

Q(h, z, a∗; θ) = fmix
(
Q(h1, a∗1 ; θ1), …, Q(hn, a∗n ; θn); θmix

)
(9.56)

≥ fmix
(
Q(h1, a′1; θ1), …, Q(hn, a′n; θn); θmix

)
(9.57)

= Q(h, z, a′; θ) (9.58)

where a′ = (a′
1, …, a′

n) is any joint action composed of arbitrary individual
actions a′1 ∈A1, …, a′n ∈An. The inequality follows from the monotonicity
of fmix with respect to its inputs (Equation 9.46) and the fact that a∗1 , …, a∗n
are greedy individual actions of all agents with respect to their individual
utility functions. Therefore, Equation 9.55 holds, so a∗ is a greedy joint
action with respect to Q(h, z, a; θ).

This concludes the proof.9

In practice, the monotonicity assumption is satisfied if the mixing network
fmix is a network with only positive weights for the utility inputs. Note, the same
constraint does not need to be imposed on the bias vectors in θmix. The parame-
ters θmix of the mixing function are obtained through a separate hypernetwork
fhyper parameterized by θhyper, which receives additional centralized information

9. We note that in their original paper, Rashid et al. (2018) do not assume strict monotonicity of the
mixing network fmix with respect to its inputs. Instead, they assume that fmix is monotonic with
respect to its inputs, that is,

∀i∈ I, ∀a∈A :
∂Q(h, z, a; θ)
∂Q(hi, ai; θi)

≥0. (9.59)

In this case, the proof of the implication "⇒" that the joint action composed of greedy individual
actions with respect to all agents’ utility functions is a greedy joint action with respect to Q(h, z, a; θ)
still holds. However, the proof of the implication "⇐" does not. To see why the strict monotonicity
assumption is necessary, consider the following counterexample for two agents with actions A1 =
{a1,1, a1,2} and A2 = {a2,1, a2,2}, respectively. Let a1,1 and a2,1 be the greedy actions with respect to
the agents’ individual utility functions

Q(h1, a1,1; θ1) > Q(h1, a1,2; θ1) and Q(h2, a2,1; θ2) > Q(h2, a2,2; θ2), (9.60)

and let the decomposed centralized action-value function be

Q(h, z, (a1, a2); θ) = fmix(Q(h1, a1; θ1), Q(h2, a2; θ2); θmix) = Q(h1, a1; θ1) (9.61)

for some actions a1 ∈A1 and a2 ∈A2, meaning that the mixing function only considers the first
agent’s utility and ignores the second agent’s utility. We can see that

∂Q(h, z, a; θ)
∂Q(h1, a1; θ1)

= 1≥ 0 and
∂Q(h, z, a; θ)
∂Q(h2, a2; θ2)

= 0≥ 0 (9.62)

so the monotonicity assumption (Equation 9.59) holds. However, the joint action a = (a1,1, a2,2) is a
greedy joint action with respect to Q(h, z, a; θ), since a1,1 maximizes the individual utility of agent
1 and the mixing function is maximized whenever the individual utility of agent 1 is maximized, but
a2,2 is not a greedy action with respect to the individual utility of agent 2. Therefore, the implication
"⇐" does not hold without the strict monotonicity assumption (Equation 9.46).

“marl-book-main” — 2025/6/18 — 20:07 — page 253 — #282

Multi-Agent Deep Reinforcement Learning 253

z as its input10 and outputs the parameters θmix of the mixing network (hence
the name "hyper"). To ensure positive weights, the hypernetwork fhyper applies
an absolute value function as activation function to the outputs corresponding
to the weight matrix of the mixing network fmix and, thus, ensures monotonic-
ity.11 Whenever Q(h, z, a; θ) is needed for optimization, the individual utilities
Q(h1, a1; θ1), …, Q(hn, an; θn) are computed and the mixing network parameters
θmix are obtained by feeding centralized information into the hypernetwork.
The utilities are then aggregated to Q(h, z, a; θ) using the mixing network with
the parameters received by the hypernetwork.

The entire architecture of QMIX is illustrated in Figure 9.8(b). During
optimization, all parameters θ of the decomposed centralized action-value
function, including the parameters of individual utility networks θ1, …, θn and
parameters of the hypernetwork θhyper, are jointly optimized by minimizing the
value loss given by

L(θ) =
1
B

∑
(ht ,zt ,at ,rt ,ht+1,zt+1)∈B

(
rt + γmax

a∈A
Q(ht+1, zt+1, a; θ̄)−Q(ht, zt, at; θ)

)2

(9.63)
over a batch B sampled from the replay buffer D with the centralized value
function and its target network being given by Equation 9.47 with parameters θ
and θ̄, respectively. The parameters of the mixing network are not optimized by
gradient-based optimization, but instead are always obtained as an output of the
optimized hypernetwork. Algorithm 22 shows pseudocode for QMIX. It is also
worth noting that the replay buffer in QMIX needs to store centralized informa-
tion zt in addition to individual agent observations, since the hypernetwork is
conditioned on this information.

It is straightforward to see that any linear decomposition of the centralized
action-value function, as seen in Equation 9.30, also upholds the monotonicity
property, but there exist monotonic decompositions of the centralized action-
value function that are not linear. A simple example is the following linear
decomposition

Q(h, z, a; θ) =
∑
i∈I

αi(h)Q(hi, ai; θi) (9.64)

where αi(h)≥ 0 are positive weights. The weights can be interpreted as the
relative importance of each agent’s contribution to the centralized action-value
function given a particular joint-observation history h. Any such weighting

10. In their original work, Rashid et al. (2018) condition the hypernetwork on the state, that is, z = s.
11. We note that the absolute value function could allow zero weights that violate the necessary
strict monotonicity assumption. However, for the strict monotonicity to be violated, all weights
corresponding to a single agent’s utility would need to be zero, which does not occur in practice.

“marl-book-main” — 2025/6/18 — 20:07 — page 254 — #283

254 Chapter 9

Algorithm 22 QMIX

1: Initialize n utility networks with random parameters θ1, . . . , θn

2: Initialize n target networks with parameters θ1 = θ1, . . . , θn = θn

3: Initialize hypernetwork with random parameters θhyper

4: Initialize a shared replay buffer D
5: for time step t = 0, 1, 2, . . . do
6: Collect current centralized information zt and observations ot

1, . . . , ot
n

7: for agent i = 1, . . . , n do
8: With probability ϵ: choose random action at

i

9: Otherwise: choose at
i ∈ arg maxai

Q(ht
i, ai; θi)

10: Apply actions; collect shared reward rt, next centralized information zt+1

and observations ot+1
1 , …, ot+1

n

11: Store transition (ht, zt, at, rt, ht+1, zt+1) in shared replay buffer D
12: Sample mini-batch of B transitions (hk, zk, ak, rk, hk+1, zk+1) from D
13: if sk+1 is terminal then
14: Targets yk← rk

15: else
16: Mixing parameters θk+1

mix← fhyper(zk+1; θhyper)

17: Targets yk← rk + γfmix


maxa′1 Q(hk+1

1 , a′1; θ1),
. . .

maxa′n Q(hk+1
n , a′n; θn)

; θk+1
mix


18: Mixing parameters θk

mix← fhyper(zk; θhyper)
19: Value estimates Q(hk, zk, ak; θ)← fmix

(
Q(hk

1, ak
1; θ1), …, Q(hk

n, ak
n; θn); θk

mix

)
20: Loss L(θ)← 1

B

∑B
k=1

(
yk−Q(hk, zk, ak; θ)

)2

21: Update parameters θ by minimizing the loss L(θ)
22: In a set interval, update target network parameters θi for each agent i

constitutes a monotonic decomposition, but VDN is only able to represent equal
weighting for all agents with αi(h) = 1 for i∈ I and all observation histories h.
This example illustrates that the monotonicity assumed by QMIX subsumes the
linearity assumption of VDN, so the set of centralized action-value functions
that can be represented with QMIX is a superset of the centralized action-value
functions that can be decomposed with VDN. In Section 9.5.4, we will see
concrete examples of games where QMIX is able to decompose the centralized

“marl-book-main” — 2025/6/18 — 20:07 — page 255 — #284

Multi-Agent Deep Reinforcement Learning 255

Q2(A) Q2(B)
Q1(A) Q(A, A) Q(A, B)
Q1(B) Q(B, A) Q(B, B)

Figure 9.9: A visualization of the format in which the value decomposition of
algorithms will be shown.

action-value function but VDN is unable to accurately represent the value
function.

QMIX has been shown to outperform VDN and many other value-based
MARL algorithms in a diverse set of common-reward environments (Rashid
et al. 2018; Papoudakis et al. 2021). However, it is worth noting that the original
implementation of QMIX (Rashid et al. 2018) includes several implementation
details, some of which may significantly contribute to its performance. Among
others, individual agent utility networks are shared across agents, that is, θi = θj

for all i, j∈ I, and these utility networks receive an additional one-hot encoded
agent ID to allow for different utility functions across agents. We will discuss
such parameter sharing with its benefits and disadvantages for deep MARL in
more detail in Section 9.7. Also, agent utility networks are modeled as recurrent
neural networks, and the observation of agent i additionally includes its last
action to allow the utility function to consider the concrete action applied while
stochastic exploration policies are followed. Lastly, an episodic replay buffer is
used to store and sample batches of entire episodes to update all networks after
the completion of each episode. All these details are not specific to QMIX and
could also be applied in other deep MARL algorithms.

9.5.4 Value Decomposition in Practice

To better understand value decomposition algorithms and their limitations, we
will analyze VDN and QMIX in simple matrix games and a level-based forag-
ing environment. Due to their simplicity, matrix games allow to visualize and
better understand the decompositions learned by VDN and QMIX. However,
these value decomposition algorithms are designed to solve complex coordi-
nation problems, so we also evaluate in a level-based foraging environment
that requires more complex coordination. To compactly represent the learned
individual utility functions and the centralized action-value function for any
matrix game, we present tables as shown in Figure 9.9 and in the following
denote the individual utility function of agent i by Qi instead of Q(·; θi).

The first matrix game (Figure 9.10(a)) is linearly decomposable, that is, the
centralized action-value function can be represented by the sum of individual

“marl-book-main” — 2025/6/18 — 20:07 — page 256 — #285

256 Chapter 9

A B
A 1 5
B 5 9

(a) True rewards

0.12 4.12
0.88 1.00 5.00
4.88 5.00 9.00

(b) VDN—linear game

−0.21 0.68
0.19 1.00 5.00
0.96 5.00 9.00

(c) QMIX—linear game

Figure 9.10: A visualization of the (a) linearly-decomposable matrix game, as
well as the learned value decomposition of (b) VDN and (c) QMIX.

utility functions. To see this, we can write the centralized action-value function
as

Q(a1, a2) = Q1(a1) + Q2(a2) (9.65)

and assign concrete values to the individual utility functions:

Q1(A) = 1, Q1(B) = 5, Q2(A) = 0, Q2(B) = 4 (9.66)

It is easy to verify that these utilities indeed lead to the desired centralized action-
value function, but many similar assignments are possible. Figure 9.10 shows
this linear game as well as the individual utility functions and decomposed
centralized action-value functions learned by VDN and QMIX. As expected,
both VDN and QMIX are able to learn an accurate centralized action-value
function.12 The learned individual utility functions of VDN are different from
the ones given in Equation 9.66 but also accurately represent the centralized
action-value function. However, these results also emphasize the fact that these
algorithms are optimized to learn accurate centralized action-value functions,
which may result in individual action-value functions that are difficult to inter-
pret. In particular for QMIX, which aggregates individual utilities through its
monotonic mixing network, the individual utilities are difficult to interpret be-
sides their ability to represent the centralized action-value function and policies
of both agents.

The second matrix game is monotonic but not linear, that is, the centralized
action-value function can be represented by a monotonic decomposition of the
individual action-value functions.

12. For all experiments, we train a feedforward neural network with two layers of sixty-four hidden
units and ReLU activation function for each agent’s utility function in both VDN and QMIX. All
networks are optimized with the Adam optimizer using a learning rate of α = 3 · 10−4 and batches
of 128 experiences sampled from the replay buffer. Target networks are updated every two hundred
time steps. To ensure sufficient exploration of all joint actions, agents follow a uniform policy
throughout training. For QMIX, the hypernetwork is represented by a two-layer feedforward neural
network with thirty-two hidden units each and the ReLU activation function between layers. For
the mixing network, we use a two-layer feedforward neural network with sixty-four units and the
ELU activation function in between layers. Both algorithms were trained until convergence (at
most 20,000 time steps).

“marl-book-main” — 2025/6/18 — 20:07 — page 257 — #286

Multi-Agent Deep Reinforcement Learning 257

A B
A 0 0
B 0 10

(a) True rewards

−1.45 3.45
−0.94 −2.43 2.51
4.08 2.60 7.53

(b) VDN—monotonic game

−4.91 0.82
−4.66 0.00 0.00
1.81 0.00 10.00

(c) QMIX—monotonic game

Figure 9.11: A visualization of the (a) monotonically decomposable matrix
game, as well as the learned value decomposition of (b) VDN and (c) QMIX.

Q
1(a1)

−5 −4 −3 −2 −1 0 1 2

Q 2
(a

2
)

−5
−4
−3
−2
−1

0
1
2

Q
(a

1
, a

2
)

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

0
0

0

10

Figure 9.12: A visualization of the QMIX mixing function fmix in the mono-
tonic matrix game. The mixing function is shown after convergence over the
individual utilities of both agents, with shading corresponding to the estimated
centralized action-value function. The mixed utilities of all four joint actions
are highlighted together with their centralized action-value estimate, with the
optimal joint action shown as a star.

Figure 9.11 shows the monotonic game as well as the learned individual
utilities and centralized action-value function for VDN and QMIX. As expected,
VDN is unable to learn an accurate centralized action-value function due to its
inability to represent non-linear value functions. In contrast, using its monotonic
mixing function, QMIX learns the true centralized action-value function. To
further illustrate the monotonic aggregation of individual utilities of both agents
through the mixing network fmix in QMIX, we visualize the mixing function
over the individual agents’ utilities in Figure 9.12. Due to the monotonicity
constraint, the estimated joint-action values increase with increasing individual
utilities. The optimal joint action has a value of +10, which is significantly larger

“marl-book-main” — 2025/6/18 — 20:07 — page 258 — #287

258 Chapter 9

A B
A
B

5
5 9

A B
A
B

0
10
0

0

A B
A
B

0 0
0 0

1

Figure 9.13: Two-step common-reward stochastic game with three states. The
transition function across the three states and the reward function within each
state is shown here. In the initial state the agents receive no rewards for any
action and agent 1 decides which matrix game to choose in the next time step:
either the linearly decomposable game, as represented by the state in the top
right, or the monotonically decomposable game, as represented by the state in
the bottom right.

4.82
4.20
2.71

4.84
9.03 9.04
7.53 7.54

0.55
0.43
4.46

4.56
0.99 5.00
5.01 9.02

-1.00
-1.64
3.51

4.12
-2.64 2.48
2.51 7.63

(a) VDN

1.30
-0.37
0.41

1.30
9.00 9.00
10.00 10.00

0.44
-0.90
0.58

1.51
1.00 5.00
5.00 9.00

-2.89
-2.41
0.63

0.84
-0.01 0.00
0.00 10.00

(b) QMIX

Figure 9.14: Learned value decomposition of (a) VDN and (b) QMIX in the
two-step common-reward stochastic game. Both algorithms were trained to
estimate undiscounted returns (γ = 1).

than the value of all the other joint actions, which is 0. QMIX’s monotonic
aggregation is able to accurately represent all these values by learning a mixing
function with a steep incline from the value estimates of suboptimal actions to
the optimal joint-action value, as seen by the sharp change in shading in the
top-right corner of the visualization.

However, it is worth noting that despite inaccurate value estimates, VDN
learns the optimal policy of (B,B) by greedily following its individual value
function. We often evaluate MARL algorithms based on the evaluation returns
(or rewards in non-repeated matrix games) and here VDN and QMIX would both
obtain the optimal reward of +10 by greedily following the learned individual
utility functions. To see that the inaccurate value estimates of VDN can be

“marl-book-main” — 2025/6/18 — 20:07 — page 259 — #288

Multi-Agent Deep Reinforcement Learning 259

A B C
A 11 -30 0
B -30 7 0
C 0 6 5

(a) Climbing game

−4.56 −4.15 3.28
−4.28 −8.84 −8.43 −1.00
−6.10 −10.66 −10.25 −2.82
5.31 0.75 1.16 8.59

(b) VDN—Climbing game

−16.60 −0.24 −4.68
−7.44 −11.16 −11.16 −11.16
7.65 −11.15 2.34 −1.37

11.27 −4.95 8.72 5.01

(c) QMIX—Climbing game

Figure 9.15: (a) Reward table of the Climbing matrix game with the learned
value decomposition of (b) VDN and (c) QMIX.

problematic, we evaluate both VDN and QMIX in a two-step common-reward
stochastic game shown in Figure 9.13. This game has three states. In the
initial state, the agents receive 0 reward for any action, but the action of agent 1
determines the next and final state. With action a1 = A, the agents will select
the previously introduced linearly decomposable matrix game. With action
a1 = B, the agents will select the monotonically decomposable matrix game.
The optimal policy in this two-step game is for agent 1 to use action B in the
initial state and for both agents to use action B in the monotonic game for a
reward of +10. QMIX accurately learns the centralized action-value function in
both games and is able to learn this optimal policy (Figure 9.14(b)). However,
VDN is only able to learn accurate value estimates in the linearly decomposable
game and underestimates the value of the optimal policy in the monotonically
decomposable game (Figure 9.14(a)). This underestimation leads to VDN
preferring to select the linearly decomposable game by choosing a1 = A in the
initial state and then choosing the policy (B,B) in the second state for a reward
of +9.13

The Climbing game, shown in Figure 9.15(a), is a more complex matrix
game with no obvious linear or monotonic decomposition to accurately repre-
sent the centralized action-value function. As we have seen in Section 9.4.5,
solving this game is challenging due to the coordination required to obtain

13. The value and utility functions learned by VDN and QMIX at both steps at t = 1 in the two-step
game are different from the ones seen in Figures 9.10 and 9.11 due to different initialization of the
networks and stochasticity introduced by the ϵ-greedy exploration policy. We train both algorithms
with γ = 1.0.

“marl-book-main” — 2025/6/18 — 20:07 — page 260 — #289

260 Chapter 9

(a) Environment

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment time steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN
VDN
QMIX

(b) Learning curve

Figure 9.16: (a) Visualization of the level-based foraging environment with
two agents collecting three items in a 8× 8 grid-world. The levels and starting
locations of agents and items are randomized for each episode lasting up to
twenty-five steps, and agents are rewarded with a shared reward for collecting
up items. (b) Learning curves for IDQN, VDN, and QMIX in the level-based
foraging environment. All algorithms are trained for two million environment
steps using a learning rate of α= 3 · 10−4, a batch size of 128, and a discount
factor of γ = 0.99. The DQN value functions and individual utilities of VDN
and QMIX are represented by a two-layer feedforward neural network with
sixty-four hidden units and the ReLU activation function. The mixing network
of QMIX is a two-layer feedforward neural network with thirty-two hidden
units. All networks are shared between both agents (Section 9.7.1). Target
networks are updated every two hundred steps and the replay buffer contains
the last 100,000 transitions. All agents explore with an ϵ-greedy policy with ϵ
linearly annealed from 1 to 0.05 over training and a fixed ϵ= 0.05 being used
during evaluation. Visualized learning curves and shading correspond to the
mean and standard deviation across evaluation returns across five runs with
different random seeds.

the optimal rewards of +11, with deviations by any individual agent leading
to significantly lower rewards. By inspecting the decomposition learned by
VDN (Figure 9.15(b)) and QMIX (Figure 9.15(c)), we see that both algorithms
learn inaccurate value functions, which also result in convergence to suboptimal
policies. VDN converges to (C,C) with a reward of +5 and QMIX converges to
(C, B) with a reward of +6. This illustrates that both VDN and QMIX can fail
to learn accurate action-value estimates and recover the optimal policy for more
complex matrix games.

“marl-book-main” — 2025/6/18 — 20:07 — page 261 — #290

Multi-Agent Deep Reinforcement Learning 261

Matrix games are a useful tool to illustrate the limitations of these algorithms
and directly analyze the learned decompositions, but they are not representative
of the complex multi-agent environments these algorithms are designed for.
Therefore, we also evaluate both VDN and QMIX in a level-based foraging
environment. Figure 9.16 shows the level-based foraging environment as well
as the learning curves for IDQN, VDN, and QMIX. In this environment,
rewards are shared across all agents. This makes the task significantly more
challenging as agents are also rewarded for items collected by other agents.
We see that QMIX significantly outperforms VDN and IDQN, achieving the
highest average returns, faster learning, and lower variance across multiple runs.
This illustrates that the increased capacity of QMIX through its mixing function
can substantially improve its performance over VDN in complex tasks. VDN
still performs better than IDQN but exhibits notably higher variance across runs
compared to QMIX.

9.5.5 Beyond Monotonic Value Decomposition

The Climbing game illustrates that the monotonicity constraint of QMIX on
the value decomposition can still be too restrictive to represent the centralized
action-value function in some environments. While the monotonicity constraint
is a sufficient condition to ensure the IGM property, it is not necessary to ensure
the IGM property. In that sense, a less restrictive constraint can be formalized to
factorize the centralized action-value function into individual utility functions.

Son et al. (2019) formulate the following conditions sufficient to ensure the
IGM property of the value decomposition, that is, the utility functions factorize
the centralized action-value function if∑

i∈I

Q(hi, ai; θi)−Q(h, z, a; θq) + V(h, z; θv) =

{
0 if a = a∗

≥ 0 otherwise
(9.67)

where a∗ = (a∗1 , …, a∗n) is the greedy joint action, that is,

a∗
i = arg max

ai∈Ai

Q(hi, ai; θi) (9.68)

for all agents i∈ I, and V(h, z; θv) denotes a utility function defined as follows

V(h, z; θv) = max
a∈A

Q(h, z, a; θq)−
∑
i∈I

Q(hi, a∗i ; θi), (9.69)

and the centralized action-value function Q over the joint history h, centralized
information z, and joint action a is parameterized by θq. These conditions use
three components: (1) individual utility functions {Q(hi, ai; θi)}i∈I , which are
combined to a linear decomposition akin to VDN, (2) a non-decomposed and
unrestricted centralized action-value function Q(h, z, a; θq), and (3) a utility

“marl-book-main” — 2025/6/18 — 20:07 — page 262 — #291

262 Chapter 9

function V(h, z; θv). The unrestricted centralized action-value function does not
enable decentralized execution but is used as a supervision signal for the linear
decomposition through the sum of individual utility functions. However, in
partially observable environments, the utility functions might lack information
to accurately represent the unrestricted centralized action-value function. To
correct for the difference between the sum of individual agent utilities and
unrestricted centralized action-value estimate for greedy actions, the utility
function V is conditioned on centralized information. The centralized utility
function V is trained to specifically represent this difference for the greedy
actions, since the IGM property only defines a relationship between the greedy
actions of the decomposed centralized action-value function and the individual
agent utilities. For fully observable environments, the utility function V is not
required and can be omitted.

It can be further shown that these conditions are also necessary to ensure the
IGM property under an affine transformation g of the individual utilities, where

g (Q(hi, ai; θi)) =αiQ(hi, ai; θi) +βi (9.70)

with αi ∈R+ and βi ∈R for all i∈ I. Given such a necessary and sufficient
conditions, we know that for any centralized action-value function that can be
factorized into individual utility functions, there exists a decomposition which
satisfies the above conditions. Likewise, if a decomposition of this form is
found, we know that it satisfies the IGM property and, therefore, factorizes the
centralized action-value function.

Based on these conditions, the QTRAN value decomposition algorithm is
defined (Son et al. 2019). QTRAN optimizes neural networks for each of the
three components found in Equation 9.67. For each agent, an individual utility
function, Q(hi, ai; θi), is trained, and QTRAN trains a single network to ap-
proximate the global utility function, V(h, z; θv), and centralized action-value
function, Q(h, z, a; θq), respectively. Therefore, in contrast to the previously
discussed value decomposition algorithms, QTRAN directly optimizes a cen-
tralized action-value function for the purpose of optimizing the individual utility
functions used for action selection. As previously discussed in Section 9.4.3,
naively training a centralized action-value function with the joint history and
centralized information as input, and one output for the value estimate of each
joint action, is infeasible for larger numbers of agents. Therefore, the network
for the centralized action-value function, Q(h, z, a; θq), receives the joint history
h, centralized information, z, and joint actions a as input and computes a single
scalar output for the corresponding value estimate. To train the centralized
action-value function, the following TD-error is minimized over a batch B

“marl-book-main” — 2025/6/18 — 20:07 — page 263 — #292

Multi-Agent Deep Reinforcement Learning 263

sampled from a replay buffer D

Ltd(θq) =
1
B

∑
(ht ,zt ,at ,rt ,ht+1,zt+1)∈B

(
rt + γQ(ht+1, zt+1, a∗t+1; θq)−Q(ht, zt, at; θq)

)2

(9.71)
where θq denotes the parameters of an architecturally identical target network,
and a∗t =

(
arg maxai∈Ai

Q(ht
i, ai; θi)

)
i∈I

is the greedy joint action at time step
t. To train the individual utility networks of all agents and ensure that the
conditions of Equation 9.67 are satisfied, QTRAN computes soft regularization
terms in the overall loss function. By minimizing the first regularization term
given by

Lopt({θi}i∈I , θv) =
1
B

∑
(ht ,zt ,at ,rt ,ht+1,zt+1)∈B(∑

i∈I

Q(ht
i, a∗t

i ; θi)−Q(ht, zt, a∗t; θq) + V(ht, zt; θv)

)2

(9.72)

QTRAN optimizes for the property stated in Equation 9.67 for the greedy joint
action. The second regularization term is computed as follows

m =
∑
i∈I

Q(ht
i, at

i; θi)−Q(ht, zt, at; θq) + V(ht, zt; θv) (9.73)

Lnopt({θi}i∈I , θv) =
1
B

∑
(ht ,zt ,at ,rt ,ht+1,zt+1)∈B

min(0, m)2 (9.74)

and optimizes for the property stated in Equation 9.67 for non-greedy joint
actions a.14 We note that the optimization of QTRAN does not directly enforce
the formulated properties defined in Equations 9.67 and 9.69, but minimizes the
additional loss terms (Equations 9.72 and 9.74), which reach their minimum
when the properties from Equations 9.67 and 9.69 are satisfied. Therefore,
these properties are only satisfied asymptotically and not throughout the entire
training process.

To get a sense of the centralized action-value functions QTRAN is able to
represent, we train the algorithm in the linear game, the monotonic game, and
the Climbing game seen in Section 9.5.4. We can see that the unconstrained
centralized action-value function Q(h, z, a; θq) of QTRAN almost exactly con-
verges to the true reward table for all three games (Figures 9.17(a), 9.18(a),

14. The QTRAN algorithm presented in this section is the QTRAN-base algorithm proposed by
Son et al. (2019). In their work, they also propose an alternative algorithm QTRAN-alt that uses a
counterfactual centralized action-value function, similar to COMA (Section 9.4.4), to compute an
alternative condition for non-greedy actions.

“marl-book-main” — 2025/6/18 — 20:07 — page 264 — #293

264 Chapter 9

A B
A 0.99 5.00
B 5.00 9.00

(a) Q(h, z, a; θq)

2.01 4.13
1.82 3.83 5.95
3.77 5.78 7.9

(b) Linear decomposition

V(h, z; θv) =
1.10

(c) Utility

Figure 9.17: Visualization of the learned (a) centralized action-value function,
(b) value decomposition, and (c) utility of QTRAN in the linearly decomposable
common-reward matrix game (Figure 9.10(a)).

A B
A 0.01 0.00
B 0.00 10.00

(a) Q(h, z, a; θq)

0.75 3.83
0.72 1.47 4.55
3.75 4.50 7.58

(b) Linear decomposition

V(h, z; θv) =
2.45

(c) Utility

Figure 9.18: Visualization of the learned (a) centralized action-value func-
tion, (b) value decomposition, and (c) utility of QTRAN in the monotonically
decomposable common-reward matrix game (Figure 9.11(a)).

and 9.19(a)). The learned linear decomposition does not converge to the correct
centralized action values (Figures 9.17(b), 9.18(b), and 9.19(b)), but together
with the learned utilities is converging to values that satisfy the formulated
constraints in Equation 9.67 for the linear game and Climbing game. For the
monotonically decomposable matrix game, the constraint for the optimal action
a∗ = (B, B) is not satisfied exactly with∑

i∈I

Q(hi, a∗i ; θi)−Q(h, z, a∗; θq) + V(h, z; θv) = 7.58− 10.00 + 2.45 (9.75)

= 0.03 (9.76)

̸= 0 (9.77)

but is still close to zero. Given the constraints of Equation 9.67 are a sufficient
and necessary condition to satisfy the IGM property, we can see that QTRAN
is able to learn a decomposition of the centralized action-value function that
satisfies the IGM property for the linear and Climbing game, and is close to
satisfying it for the monotonic game. For all three games, the learned decompo-
sition of QTRAN gives rise to the optimal policy, indicating its ability to express
more complex decompositions than VDN and QMIX, which were unable to
learn the optimal policy in the Climbing game.

“marl-book-main” — 2025/6/18 — 20:07 — page 265 — #294

Multi-Agent Deep Reinforcement Learning 265

A B C
A 11.01 -30.25 0.00
B -30.27 5.38 5.73
C 0.00 6.18 4.31

(a) Q(h, z, a; θq)

4.98 4.29 2.63
4.67 9.65 8.96 7.30
3.98 8.96 8.27 6.61
2.45 7.43 6.74 5.08

(b) Linear decomposition

V(h, z; θv) =
1.36

(c) Utility

Figure 9.19: Visualization of the learned (a) centralized action-value function,
(b) value decomposition, and (c) utility of QTRAN in the Climbing game
(Figure 9.15(a)).

However, it is worth noting that QTRAN suffers from several issues in
complex environments. First, training the non-decomposed centralized action-
value function becomes challenging in tasks with a large number of agents or
actions, since the joint-action space typically grows exponentially to the number
of agents. Second, the formal conditions underlying the QTRAN algorithm are
sufficient and necessary to ensure the IGM property, but the practical algorithm
relaxes these conditions for a tractable optimization objective as detailed above.
This relaxation means that the IGM property is not ensured throughout training,
which can lead to degrading performance.

There exist several other value decomposition algorithms that, similar to
QTRAN, aim to expand on QMIX by either increasing the capacity of the
trained value functions or relaxing the monotonicity constraint. For example,
Rashid et al. (2020) observe that VDN and QMIX put equal importance on
learning value estimates for each possible joint action. However, to learn the
optimal policy and ensure the IGM property, greedy or potentially optimal
actions are more important. Based on this intuition, they propose the weighted
QMIX algorithm that trains an unconstrained mixing network in addition to the
typical utility functions and mixing network of QMIX. Using this unconstrained
centralized action-value function, the algorithm can learn a weighted value loss,
which puts more emphasis on learning the value estimates of joint actions that
are considered potentially optimal. Similar to QTRAN, weighted QMIX is
not guaranteed to ensure the IGM property all throughout training, but the
algorithm is shown to improve on the performance of QMIX in many complex
environments. Instead, Wang et al. (2021) propose a duplex decomposition that
represents the centralized action-value function and action-conditioned utility
functions with value and advantage functions:

Q(h, z, a) = V(h, z) + A(h, z, a) with V(h, z) = max
a′∈A

Q(h, z, a′) (9.78)

“marl-book-main” — 2025/6/18 — 20:07 — page 266 — #295

266 Chapter 9

Q(hi, ai) = V(hi) + A(hi, ai) with V(hi) = max
a′i ∈Ai

Q(hi, a′i) (9.79)

Based on this decomposition, an equivalent advantage-based IGM property can
be defined that is ensured to be upheld throughout training by their proposed
QPLEX algorithm. In addition to the duplex decomposition, the QPLEX algo-
rithm uses a linear mixing of advantage functions to ensure the IGM property
with mixing weights being computed through a multi-head attention (Vaswani
et al. 2017) operation.

In this section, we have discussed value decomposition algorithms for
common-reward games. These algorithms decompose the centralized action-
value function into individual utilities of agents to (1) simplify the learning
problem and (2) enable decentralized execution of agents. All discussed al-
gorithms can be considered value-based MARL algorithms, since they learn
value functions and use these to derive policies without learning an explicit
representation of these policies. However, the idea of decomposing centralized
value functions to simplify the learning problem can also benefit multi-agent
policy gradient algorithms by simplifying the learning of centralized critics.
Following this idea, the factored multi-agent centralized policy gradient algo-
rithm (FACMAC) (Peng et al. 2021) proposes to train a decomposed centralized
critic alongside an individual policy network for each agent. The decomposition
uses a similar architecture to QMIX with a mixing network, but FACMAC does
not necessarily need to restrict the mixing function to be monotonic since the
parameterized policies are used for decentralized execution and, thus, the IGM
property is not required.

9.6 Agent Modeling with Neural Networks

In any multi-agent environment, agents have to consider the actions of other
agents to learn effective policies. This appears obvious, but is only indirectly
achieved in the previous approaches introduced in this chapter. In indepen-
dent learning algorithms (Section 9.3), multi-agent policy gradient algorithms
(Section 9.4), and value decomposition algorithms (Section 9.5), the action
selection of other agents is only considered through the training data that is
generated by all agents, or by training centralized critics that can be conditioned
on the actions of other agents. This raises the question of how we might be
able to provide agents with more explicit information about the policies of
other agents. In addition, in MARL, agents continually learn and change their
policies, and so agents need to continually adapt to the changing policies of

“marl-book-main” — 2025/6/18 — 20:07 — page 267 — #296

Multi-Agent Deep Reinforcement Learning 267

other agents. Agent modeling allows agents to explicitly model the policies of
other agents and, in this way, adapt to potential changes in their behavior.

In Section 6.3, we already saw how we can model the policies of other agents
by observing their actions and computing their empirical action distribution.
However, similar to tabular value functions, these approaches are limited due
to their inability to generalize to novel states for which actions of other agents
have not yet been observed. In this section, we will see how we can use deep
neural networks to learn generalizable models of the policies of other agents.
We consider two different approaches. The first approach is a direct extension
of the joint-action learning approach introduced in Section 6.3.2, in which
agents use neural networks to reconstruct the policies of other agents. The
second approach learns representations of the policies of other agents (instead
of reconstructing the policies directly), and these representations can be used as
additional information to condition policies and value functions on.

9.6.1 Joint-Action Learning with Deep Agent Models

In joint-action learning, first introduced in Section 6.3.2, each agent learns a
joint-action value function that estimates expected returns for each possible
joint action of the agents. These functions were previously conditioned on the
fully observed states in a stochastic game. In order to extend this approach
to partially observable environments such as defined by POSGs, agents can
learn a centralized action-value function that depends on the agent’s individual
observation history and the actions of all agents. Based on this function, agents
can learn to select actions that are optimal with respect to the actions of other
agents. However, to select actions in a decentralized manner, each agent needs
to know the actions that all other agents intend to take at the current time step.
This is not possible in multi-agent environments, where agents only have access
to their observation history at execution time, and we assume simultanous action
selection of all agents. To overcome these issues, each agent can learn a model
of the other agents’ policies. To train such agent models, agents need access
to the actions of other agents during training. Then, during execution, agents
can use their agent models to predict which actions other agents might take
at the current time step, and select actions that are optimal with respect to the
predicted actions of all other agents.

Formally, each agent i maintains agent models π̂i
−i = {π̂i

j}j ̸=i of the policies of
all other agents, where π̂i

j is the agent model maintained by agent i for the policy
of agent j and is parameterized by ϕi

j. Each agent model is a neural network
that takes the observation history of agent i as input and outputs a probability
distribution over the actions of agent j. We note that the true policies of other

“marl-book-main” — 2025/6/18 — 20:07 — page 268 — #297

268 Chapter 9

agents are conditioned on the observation histories of the respective agents.
However, agent i does not observe the observation histories of other agents at
execution time, so we approximate the policies of other agents based on the
information available to agent i.

To learn the agent models, during training, agents can use the past actions of
other agents. Let at

j be the action taken by agent j at time step t after full history
ĥt. Let ht

i =σi(ĥt) be the respective individual observation history of agent i.
Then, the agent model π̂i

j of agent i for the policy of agent j can be updated by
minimizing the cross-entropy loss between the action probabilities predicted by
π̂i

j and the true action of agent j:

L(ϕi
j) =− log π̂i

j(a
t
j | ht

i;ϕ
i
j) (9.80)

Minimizing this cross-entropy loss is equivalent to maximizing the likelihood
of the agent model to select the action at

j of agent j given the observation history
ht

i of agent i. We can train the agent models of all agents using mini-batches of
experiences sampled from a replay buffer.

In addition to these agent models, each agent trains a centralized action-value
function Q parameterized by θi. The value function takes the observation history
of agent i and actions of all other agents a−i as input, and outputs the estimated
centralized action value for each action of agent i (similar to Figure 9.4). We
can train the agent models and the centralized action-value function similarly to
the DQN algorithm, using mini-batches of experiences sampled from a replay
buffer to minimize the loss

L(θi) =
1
B

∑
(ht

i ,at ,rt
i ,h

t+1
i)∈B

(
rt

i + γ max
a′i ∈Ai

AV(ht+1
i , a′

i ; θi)−Q(ht
i, ⟨at

i, at
−i⟩; θi)

)2

(9.81)
with θi denoting the parameters of the target network. The target action value is
computed using the greedy action of agent i and the action probabilities of all
other agents predicted by their respective agent models:

AV(hi, ai; θi) =
∑

a−i∈A−i

Q(hi, ⟨ai, a−i⟩; θi)π̂i
−i(a−i | hi;ϕi

−i) (9.82)

=
∑

a−i∈A−i

Q(hi, ⟨ai, a−i⟩; θi)
∏
j̸=i

π̂i
j(aj | hi;ϕi

j) (9.83)

To compute Equation 9.83, we need to sum over all possible joint actions
a−i of all other agents. This is intractable in environments with many agents
or large action spaces. To address this issue, we can approximate the expected
target value by sampling a fixed number K of joint actions from the models of
all other agents and computing the average target values over these sampled

“marl-book-main” — 2025/6/18 — 20:07 — page 269 — #298

Multi-Agent Deep Reinforcement Learning 269

Algorithm 23 Deep joint-action learning

1: Initialize n value networks with random parameters θ1, . . . , θn

2: Initialize n target networks with parameters θ1 = θ1, . . . , θn = θn

3: Initialize n policy networks with parameters ϕ1
−1, . . . ,ϕn

−n

4: Initialize a replay buffer for each agent D1, D2, . . . , Dn

5: for time step t = 0, 1, 2, . . . do
6: Collect current observations ot

1, . . . , ot
n

7: for agent i = 1, . . . , n do
8: With probability ϵ: choose random action at

i

9: Otherwise: choose at
i ∈ arg maxai

AV(hi, ai; θi)

10: Apply actions (at
1, …, at

n); collect rewards rt
1, …, rt

n and next observations
ot+1

1 , …, ot+1
n

11: for agent i = 1, . . . , n do
12: Store transition (ht

i, at
i, rt

i , ht+1
i) in replay buffers Di

13: Sample random mini-batch of B transitions (hk
i , ak

i , rk
i , hk+1

i) from Di

14: if sk+1 is terminal then
15: Targets yk

i ← rk
i

16: else
17: Targets yk

i ← rk
i + γmaxa′i ∈Ai AV(hk+1

i , a′i ; θi)

18: Critic loss L(θi)← 1
B

∑B
k=1

(
yk

i −Q(hk
i , ⟨ak

i , ak
−i⟩; θi)

)2

19: Model loss L(ϕi
−i) =

∑
j ̸=i

1
B

∑B
k=1− log π̂i

j(a
k
j | hk

i ;ϕi
j)

20: Update parameters θi by minimizing the loss L(θi)
21: Update parameters ϕi

−i by minimizing the loss L(ϕi
−i)

22: In a set interval, update target network parameters θi

joint actions. Let ĥ be the full history with hi =σi(ĥ) denoting the individual
observation history of agent i, then we can approximate the expected action
value for agent i with action ai and history hi as follows:

AV(hi, ai; θi) =
1
K

K∑
k=1

Q(hi, ⟨ai, ak
−i⟩; θi)

∣∣∣∣
ak

j ∼π̂i
j (·|hi)

(9.84)

Algorithm 23 shows pseudocode for the joint-action learning algorithm with
neural networks. The computation of action values can either be instantiated
using the exact computation of Equation 9.83 or the approximate sampling-
version of Equation 9.84. The latter is more efficient but might introduce

“marl-book-main” — 2025/6/18 — 20:07 — page 270 — #299

270 Chapter 9

(a) Environment

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment time steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN
JAL-AM (exact)
JAL-AM (sampled K = 10)

(b) Learning curve

Figure 9.20: (a) A visualization of the level-based foraging environment with
two agents collecting two items in a 5× 5 grid-world. The levels and starting
locations of agents and items are randomized for each episode lasting up to
twenty-five steps, and item levels are such that both agents always have to
cooperate to collect any items. (b) Learning curve of IDQN and JAL-AM
with exact action-value estimation (Equation 9.83) as well as the sampling
approach for K = 10 (Equation 9.84) in the level-based foraging environment.
All algorithms are trained for two million environment steps using a learning
rate of α= 3 · 10−4, a batch size of 128, and a discount factor of γ = 0.99. All
value function networks are represented by a two-layer feedforward neural
network with sixty-four hidden units and the ReLU activation function. The
agent models to represent the policy of the other agent consists of a three-
layered feedforward neural network with sixty-four hidden units and the ReLU
activation functions. Target networks are updated every two hundred steps and
the replay buffer contains the last 100,000 transitions. All agents explore with
an ϵ-greedy policy with ϵ linearly annealed from 1 to 0.05 over training and
a fixed ϵ= 0.05 being used during evaluation. Visualized learning curves and
shading correspond to the mean and standard deviation across evaluation returns
across five runs with different random seeds.

additional variance in the learning process. To see how these two approaches
compare in practice, we train agents using both approaches in a small level-
based foraging environment in which agents have to cooperate to collect any
items (Figure 9.20). IDQN fails to learn policies which reliably collect items
whereas JAL-AM learns to collect items. Interestingly, the sampling-version of
JAL-AM learns faster and more reliably than the exact variant. This is likely due
to sampling variant prioritizing action values over the most common actions of
the other agent for which the value function has been trained more and, thereby,

“marl-book-main” — 2025/6/18 — 20:07 — page 271 — #300

Multi-Agent Deep Reinforcement Learning 271

Figure 9.21: The encoder network f e outputs a representation mt
i of the policies

of other agents. During training, a decoder network f d is trained to reconstruct
the action probabilities of all other agents’ policies from the representation.
During execution, the representation is used to condition the policy of the agent.

might provide more precise value estimates. Additionally, the sampling process
might introduce additional noise which might help to explore the environment.

9.6.2 Learning Representations of Agent Policies

The goal of agent modeling, specifically policy reconstruction, is to consider
the policies of other agents during learning and acting. In an ideal setting, we
would like to condition the policies and value functions of agents on the policies
of all other agents. However, this may not be feasible for multiple reasons. First,
the policies of other agents might be available during centralized training but
are not known to the agent during decentralized execution. Second, the policies
of other agents might be too complex to be represented explicitly. For example,
the policies of other agents might be implemented using neural networks. In
this case, we could represent their policies by the parameters, ϕ−i = {ϕj}j ̸=i, of
their policy networks, but the number of parameters is typically too large to
effectively condition agent policies on it. Third, the policies of agents change
during learning. Given these challenges, we would like to obtain compact
representations of the policies of other agents that can be inferred from the
individual observations of an agent, and adapt as the policies of other agents
change. In the following, we will discuss how such representations of agent
policies can be learned.

Encoder-decoder neural network architectures are commonly used to learn
a compact representation of some data which is indicative of specific features.
As visualized in Figure 9.21, these types of architectures consist of two neural
networks: an encoder network f e and a decoder network f d. To learn represen-
tations of the policies of other agents from the individual observation history of
agent i, the encoder network f e takes as input the observation history and outputs
a representation, mt

i = f e(ht
i;ψ

e
i). The decoder network f d takes as input the rep-

resentation mt
i of the corresponding encoder and predicts the action probabilities

“marl-book-main” — 2025/6/18 — 20:07 — page 272 — #301

272 Chapter 9

of all other agents at the current time step, π̂i,t
−i = f d(mt

i;ψ
d
i). π̂i,t

j represents a
|Aj|-dimensional vector corresponding to the action probabilities for each action
of agent j at time step t according to agent i’s agent model. We denote the
probability of the model for action aj with π̂i,t

j (aj), and denote the parameters
of the encoder and decoder of agent i with ψe

i and ψd
i , respectively. Given

these reconstructions, the encoder and decoder networks are jointly trained to
minimize the cross-entropy loss for the predicted action probabilities and true
actions of all other agents at the current time step:

L(ψe
i ,ψd

i) =
∑
j ̸=i

− log π̂i,t
j (at

j) with π̂i,t
j = f d (f e(ht

i;ψ
e
i);ψd

i

)
(9.85)

Using this loss, the encoder network e is trained to represent information within
mt

i which is indicative of the action selection of all other agents.
The policies and value functions of agents can then be additionally condi-

tioned on the representations outputted by the respective encoder of the agent.15

One benefit of this approach of agent modeling is that it is agnostic to the
MARL algorithm used to learn the policies of agents. Any MARL algorithm
can be extended to condition the policies and value functions of agents on
the representations outputted by the encoder networks. For example, to ex-
tend centralized A2C (Algorithm 20) with this approach, we can condition
the policy, π(· | hi, mi;ϕi), and centralized critic, V(hi, z, mi; θi), on the learned
representations.

To illustrate the benefits of this type of agent modeling, we train agents using
the centralized A2C algorithm with and without representation-based agent
modeling in a fully observable level-based foraging environment. Figure 9.22
visualizes the environment and learning curves for all agents. We observe that
agents with agent models learn to collect items more quickly than agents without
agent models. Agents with agent models seemingly learn more efficiently, and
converge to higher average returns. Convergence to higher average returns and
notably lower variance across runs indicate that the policies learned with agent
models are more robustly collecting all food items for maximum returns.

Similar approaches of agent modeling with encoder-decoder architectures
have been applied in a slightly different setting in which a single main agent is
trained to interact with other fixed agents (Rabinowitz et al. 2018; Papoudakis,
Christianos, and Albrecht 2021; Zintgraf et al. 2021). In this setting, the
other agents do not learn during the training of the main agent, but follow

15. During training, gradients from the MARL algorithm used to train policies and value functions
would naturally flow backwards through the representations mt

i and update the parameters ψe
i of

the encoder. To train the encoder purely from the encoder-decoder reconstruction loss defined in
Equation 9.85, we stop gradients of the MARL training from flowing into the encoder.

“marl-book-main” — 2025/6/18 — 20:07 — page 273 — #302

Multi-Agent Deep Reinforcement Learning 273

(a) Environment

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Environment time steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

Centralised A2C
Centralised A2C + AM

(b) Learning curve

Figure 9.22: (a) Visualization of the level-based foraging environment with
two agents collecting two items in a 8× 8 grid-world. The levels and starting
locations of agents and items are randomized for each episode lasting up to
25 steps, and item levels are such that both agents always have to cooperate
to collect any items. (b) Learning curve of centralized A2C with and without
representation-based agent models in the level-based foraging environment. All
algorithms are trained for 16 million environment steps across eight synchronous
environments using a learning rate of α= 3 · 10−4, and a discount factor of
γ = 0.99. All value function, policy, and agent model encoder networks are
represented by a two-layer feedforward neural network with 64 hidden units and
the ReLU activation function. The decoder of the agent models has three layers
instead with 64 hidden units and the ReLU activation function. Agents compute
N-step advantage estimates with N = 10, and use an entropy regularization term
with a coefficient of 0.01. Visualized learning curves and shading correspond to
the mean and standard deviation across evaluation returns across five runs with
different random seeds.

fixed policies sampled from a predetermined set of policies. In addition to
reconstructing the policies of other agents, these approaches propose to predict
the observations or current “mental state” of other agents in the decoder as an
indicator for the information other agents might have.

So far, we answered the question of how agents can gain knowledge about the
policies of other agents and leverage this knowledge during learning and acting.
Beyond this question, agents can further consider how other agents might react
to their decision making, or how their actions might affect the learning of
other agents. Humans naturally consider how their actions might affect others,
and what others might believe about their own knowledge. This is known as
theory of mind (Premack and Woodruff 1978) or recursive reasoning (Albrecht

“marl-book-main” — 2025/6/18 — 20:07 — page 274 — #303

274 Chapter 9

and Stone 2018; Doshi, Gmytrasiewicz, and Durfee 2020). The probabilistic
recursive reasoning framework of Wen et al. (2019) applies this concept to
MARL. In this framework, agents recursively reason about the belief of other
agents’ policies and how their actions might affect other agents. The framework
is implemented using Bayesian variational inference to model the believes of
agents about the policies of other agents as well as the uncertainty of these
beliefs. These believes are updated and recursively propagated, and integrated
into fully decentralized actor-critic and value-based MARL algorithms.

Opponent shaping is a similar idea, which tries to answer the following
question: how can agents leverage the fact that other agents are learning by
shaping their behavior to their own advantage?16 If the main agent knows the
optimization objective or learning rule by which other agents are updating
their policies, then we can compute higher-order gradients through the learning
objective of other agents to account for the changes in their policy caused by
actions taking by the main agent. This idea can be integrated into deep RL
algorithms (Foerster, Chen, et al. 2018; Letcher et al. 2019) to shape the policies
of other agents. More broadly, this approach can be viewed as a meta learning
problem in which multiple agents learn policies within the “inner” learning
process, whereas the “outer” learning process optimizes the policy of the main
agent considering the learning of all other agents in the “inner” process (Kim
et al. 2021; Lu et al. 2022).

9.7 Environments with Homogeneous Agents

As the number of agents increases, the parameter space of multi-agent deep
RL methods can increase significantly. For example, IDQN uses an action-
value network containing a large number of parameters θi for each agent i in
the environment. Having more agents in IDQN requires more sets of such
parameters, each defining the parameters of an action-value function. Updating
and training multiple neural networks can be a slow process and require a lot
of computational power. In this section, we discuss methods to improve the
scalability and sample-efficiency of MARL algorithms in environments where
agents are homogeneous.

A game in which the agents are homogeneous intuitively means that all agents
share the same or similar capabilities and characteristics, such as the same set
of actions, observations, and rewards. Homogeneous agents can be thought of

16. A related idea is the concept of value of information, discussed in Section 6.3.3, as well as
ideas based on “manipulation learning” (Fudenberg and Levine 1998) and “teaching” (Shoham and
Leyton-Brown 2008).

“marl-book-main” — 2025/6/18 — 20:07 — page 275 — #304

Multi-Agent Deep Reinforcement Learning 275

as identical or nearly identical copies of each other, and they interact with the
environment in similar ways. Intuitively, this allows agents to interchange their
policies while still preserving the overall result in solving a task, regardless
of which agent is executing which policy. The level-based foraging example
(Section 11.3.1) is such a game: the agents are all randomly assigned a level in
the beginning of an episode, they move in the environment using the same set of
actions, and receive the same rewards for performing similar actions to gather
the items. We define such a game as an environment with weakly homogeneous
agents.

Definition 14 (Weakly homogeneous agents) An environment has weakly
homogeneous agents if for any joint policy π = (π1,π2, . . . ,πn) and permutation
between agents σ : I→ I, the following holds:

Ui(π) = Uσ(i)
(
⟨πσ(1),πσ(2), . . . ,πσ(n)⟩

)
, ∀i∈ I (9.86)

At a first glance, one could assume that in such an environment, the optimal
policy of the agents would be to behave identically. This is not necessarily
true, as we will discuss in the rest of the section, especially given the numerous
solution concepts in MARL (Chapter 4). However, to capture environments
in which all agents act identically under the optimal policy, we also define an
environment with strongly homogeneous agents.

Definition 15 (Strongly homogeneous agents) An environment has strongly
homogeneous agents if the optimal joint policy consists of identical individual
policies, formally:

• The environment has weakly homogeneous agents.
• The optimal joint policy π∗ = (π1,π2, . . . ,πn) consists of identical

policies π1 =π2 = · · ·=πn.

Figure 9.23 shows environments with weakly homogeneous (left) and
strongly homogeneous (right) agents. In both examples, the agents start at
a random location and must reach a target location to receive a positive reward
and end the game. The agents can only observe their own position relative to
the landmark(s) and move in one of the four cardinal directions.

In the environment shown in Figure 9.23(a), there are two landmarks that
the agents must reach. The agents are weakly homogeneous in this example
because their policies can be switched without affecting the outcome of the
game; if they have learned to move to opposite landmarks, they will still move to
them even if their policies are switched. However, the optimal joint policy (e.g.,
agent 1 moving to the left landmark and agent 2 moving to the right landmark)

“marl-book-main” — 2025/6/18 — 20:07 — page 276 — #305

276 Chapter 9

(a) Agents have to move to two dif-
ferent locations.

(b) Both agents have to move to the
same location.

Figure 9.23: Illustrations of environments with weakly (left) and strongly
(right) homogeneous agents. Agents (circles) have to move to certain locations
(squares) to receive a positive reward. In the beginning of the episode, the
agents begin in a random location. For simplicity, agents can only observe the
squares, they cannot collide, and each agent chooses to move in one of the four
cardinal directions. The agents receive a common reward of 1 only when they
both arrive at their goal.

requires the agents to behave differently by moving to different landmarks, and
as such, the environment does not have strongly homogeneous agents.

In contrast, the environment shown in Figure 9.23(b) has a single landmark
for both agents to move to. The optimal policy in this environment requires both
agents to move to the same landmark as soon as possible, making the agents
strongly homogeneous.

In the next two subsections, we will further discuss environments with weakly
and strongly homogeneous agents, and how the properties of such environments
can be exploited for improved sample and computational efficiency.

9.7.1 Parameter Sharing

Sharing parameters across agents can offer significant improvements on an
algorithm’s sample-efficiency in environments with strongly homogeneous
agents. Parameter sharing consists of agents using the same set of parameter
values in their neural networks, that is,

θshared = θ1 = θ2 = · · ·= θn and/or

ϕshared =ϕ1 =ϕ2 = · · ·=ϕn.
(9.87)

Equation 9.87 constrains the joint policy to consist of identical policies for
all agents, and, thereby, reduces the number of possible joint policies. This
constraint aligns with the definition of strongly homogeneous agents introduced

“marl-book-main” — 2025/6/18 — 20:07 — page 277 — #306

Multi-Agent Deep Reinforcement Learning 277

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment time steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

Fully Shared Parameters
Shared Parameters (Critic-only)
Shared Parameters (Actor-only)
Not Sharing Parameters

Figure 9.24: Learning curves for the independent actor-critic algorithm with
parameter sharing across both critic and actor, parameter sharing only for the
critic or actor, and without any parameter sharing on the level-based foraging
environment.

earlier (Definition 15), which states that the optimal joint policy can be rep-
resented as a joint policy consisting of identical policies for all agents. Any
experience generated by those agents, in the form of observations, actions, and
rewards, is then used to update shared parameters simultaneously. Sharing
parameters among agents has two main benefits. Firstly, it keeps the number of
parameters constant, regardless of the number of agents, whereas not sharing
would result in a linear increase in the number of parameters with the number
of agents. Secondly, the shared parameters are updated using the experiences
generated by all agents, resulting in a more diverse and larger set of trajectories
for training.

The caveat is that strongly homogeneous agents is a strong assumption, and
it is one that might be difficult to verify. If agents share parameters, the policies
of the agents are identical. An environment with weakly homogeneous agents
will not see the same benefit from parameter sharing. An example was already
shown in Figure 9.23(a), in which the agents are weakly homogeneous but the
optimal policies of the agents are different and cannot be learned if the constraint
of Equation 9.87 is enforced. So, when approaching a problem, one should
consider the properties of the environment and decide whether techniques such
as parameter sharing could be useful.

Theoretically, we might be able to train diverse policies and still retain the
benefits of shared parameters in environments with weakly homogeneous agents.

“marl-book-main” — 2025/6/18 — 20:07 — page 278 — #307

278 Chapter 9

To achieve that, the observations of the agents can include their index i to create
a new observation ōt

i. Since each agent will always receive an observation that
contains their own index, they will theoretically be able to develop distinct
behaviors. But in practice, learning distinct policies by relying on the index may
not be sufficient, as the representational capacity of neural networks might not
be enough to represent several distinct strategies. The work of Christianos et
al. (2021) discusses the limitations of parameter sharing and parameter sharing
with an observation that contains the agent index.

To further illustrate the advantages of parameter sharing in an environment
with strongly homogeneous agents, we have executed four variations of the
independent A2C algorithm (Algorithm 19) in a level-based foraging environ-
ment. The four variations are (i) using parameter sharing in both actor and critic,
(ii) parameter sharing only on the critic, (iii) parameter sharing only on the
actor, and (iv) no parameter sharing. Figure 9.24 presents the average returns
during training for the four variations in a level-based foraging environment
with a grid-world of size 6× 6, two level-1 agents, and one level-2 item. In the
figure, we observe that sharing parameters leads to the algorithm converging in
fewer time steps. However, it does not necessarily increase the final converged
returns, as all algorithms eventually reach a similar policy in this example.

9.7.2 Experience Sharing

Parameter sharing offers computational advantages by retaining only a single
set of policy (and/or value) network parameters. Learning only one set of
parameters can be very beneficial in environments with strongly homogeneous
agents, since it constrains the policy search space to identical individual policies.
A different approach would be to train a different set of parameters for each
agent, but share the trajectories generated between the agents. This approach
relaxes the strongly homogeneous agent assumption and allows for different
policies to be learned. For example, consider the IDQN algorithm, where
each agent collects experience tuples and stores them in a replay buffer. In
an environment with weakly homogeneous agents, the replay buffer could be
shared across all agents. Now, an agent could sample and learn from a transition
collected by a different agent.

In Algorithm 24 we show how DQN can be implemented with a shared replay
buffer. In the pseudocode shown, the experience replays of IDQN (D1…n) are
replaced with a single shared one Dshared. This simple change can improve
learning in environments with weakly homogeneous agents, as the variety of
experiences found in the replay buffer increases. Also, any successful policy

“marl-book-main” — 2025/6/18 — 20:07 — page 279 — #308

Multi-Agent Deep Reinforcement Learning 279

by an agent that achieves higher returns will further populate the replay buffer
with those experiences from which the other agents can also learn.

Directly using a shared replay buffer in IDQN (i.e., replacing D1,...,n with a
Dshared in Algorithm 17 of Algorithm 17) will not necessarily make a difference
to using individual buffers, however. That is because the number of samples
used for training (Algorithm 17, Algorithm 17) remains constant. The benefit of
a shared replay buffer is that it will contain more (and more recent) experiences
than an individual buffer. To exploit that, we can increase the number of samples
used for training. Therefore, DQN with shared replay buffer needs to contain
a loop that performs the backpropagation steps. The algorithm can be seen
in Algorithm 24. Note that we denote the experience sampled in the mini-
batch for agent i without the subscript i (e.g., ok instead of ok

i) to indicate that
the experience is sampled from the shared replay buffer and could have been
generated by any agent.

Implementing DQN with shared experiences is relatively simple because
DQN is an off-policy algorithm. Off-policy algorithms can make use of tran-
sitions collected by other agents. That is not the case for algorithms such
as independent actor-critic (Algorithm 19). Shared experience actor-critic
(SEAC) (Christianos, Schäfer, and Albrecht 2020) uses importance sampling
to correct for transitions collected by other algorithms and apply the idea of
experience sharing to on-policy settings.

In on-policy based algorithms, such as A2C or PPO, each agent generates
one on-policy trajectory in every episode. The algorithms we have seen so
far, such as independent A2C or A2C with centralized state-value critics, used
the experience of each agent’s own sampled trajectory to update the agent’s
networks with respect to their policy loss (e.g., Equation 9.4). The SEAC
algorithm reuses trajectories of other agents while considering that they have
been collected as off-policy data, that is, the trajectories were generated by
agents executing different policies than the one being optimized. Correcting
for off-policy samples can be achieved with importance sampling. The loss for
such off-policy policy gradient optimization from a behavioral policy πβ can be
written as

L(ϕ) =−π(at | ht;ϕ)
πβ(at | ht)

(
rt + γV(ht+1; θ)−V(ht; θ)

)
logπ(at | ht;ϕ), (9.88)

in a similar fashion to Equation 8.42 in Section 8.2.6. In the independent A2C
framework of Section 9.3.2, we can extend the policy loss to use the agent’s own
trajectories (denoted with i) along with the experience of other agents (denoted

“marl-book-main” — 2025/6/18 — 20:07 — page 280 — #309

280 Chapter 9

Algorithm 24 Deep Q-networks with shared experience replay

1: Initialize n value networks with random parameters θ1, . . . , θn

2: Initialize n target networks with parameters θ1 = θ1, . . . , θn = θn

3: Initialize a single replay Dshared buffer for all agents
4: for time step t = 0, 1, 2, . . . do
5: Collect current observations o0

1, . . . , o0
n

6: for agent i = 1, . . . , n do
7: With probability ϵ: choose random action at

i

8: Otherwise: choose at
i ∈ arg maxai

Q(ht
i, ai; θi)

9: Apply actions (at
1, …, at

n); collect rewards rt
1, …, rt

n and next observations
ot+1

1 , …, ot+1
n

10: Store transition (ht
i, at

i, rt
i , ht+1

i) for each agent i in replay buffer Dshared

11: for agent i = 1, . . . , n do
12: Sample random mini-batch of B transitions (hk, ak, rk, hk+1) from Dshared

that may have been generated by any agent
13: if sk+1 is terminal then
14: Targets yk

i ← rk

15: else
16: Targets yk

i ← rk + γmaxa′i ∈Ai Q(hk+1, a′i ; θi)

17: Loss L(θi)← 1
B

∑B
k=1

(
yk

i −Q(hk, ak; θi)
)2

18: Update parameters θi by minimizing the loss L(θi)
19: In a set interval, update target network parameters θi

with k), shown as follows:

L(ϕi) =−
(
rt

i + γV(ht+1
i ; θi)−V(ht

i; θi)
)

logπ(at
i | ht

i;ϕi)

−λ
∑
k ̸=i

π(at
k | ht

k;ϕi)
π(at

k | ht
k;ϕk)

(
rt

k + γV(ht+1
k ; θi)−V(ht

k; θi)
)

logπ(at
k | ht

k;ϕi)

(9.89)

Using this loss function, each agent is trained on both on-policy data while
also using the off-policy data collected by all other agents at each training step.
The hyperparameter λ controls how much the experience of others is weighted,
with λ= 1 indicating that the experience of others has the same weight to the
agent and λ= 0 collapsing to no-sharing. The value function can also make

“marl-book-main” — 2025/6/18 — 20:07 — page 281 — #310

Multi-Agent Deep Reinforcement Learning 281

use of experience sharing. The final algorithm is identical to independent A2C
(Algorithm 19) but uses Equation 9.89 for learning the parameters.

Why would one consider using experience sharing over parameter sharing?
Experience sharing is certainly more expensive in terms of computational power
per environment step, as it increases the size of the batch and has a number
of neural network parameters that scale with the number of agents. However,
it has been shown (Christianos, Schäfer, and Albrecht 2020) that initializing
agent-specific neural networks can lead to learning better policies: not making
the assumption that an environment contains strongly homogeneous agents and
not restricting policies to be identical can lead to higher converged returns.

In contrast to parameter sharing, experience sharing does not assume that
the optimal joint policy π∗ = (π1,π2, . . . ,πn) consists of identical policies π1 =
π2 = · · · =πn. In addition, the benefit of experience sharing over not sharing any
experience or parameters is that it increases the sample-efficiency of algorithms
by using all the available trajectories for learning. But another, less apparent,
benefit is that it ensures a uniform learning progression between agents. Agents
learning from the experience of others can quickly catch up on policies that
achieve higher returns, since each agent learns using the experiences from all
agents, including agents with more advanced policies. In turn, when agents have
a similar learning progression, they get more opportunities to explore actions
that require coordination, resulting in better efficiency in data collection.

9.8 Policy Self-Play in Zero-Sum Games

In this section, we will turn our attention to zero-sum games with two agents
and fully observable states and actions, in particular turn-taking board games
such as chess, shogi, backgammon, and Go. Such games are characterized by
three primary aspects, which in combination can make for a very challenging
decision problem for an agent:

Sparse reward The game terminates after a finite number of moves, at which
point the winning player receives a +1 reward and the losing player receives
a −1 reward; or both players receive a 0 reward in the case of a draw
outcome. In all other cases there is no reward signal, meaning the reward
is always 0 in non-terminal states, until a terminal state is reached.

Large action space The agents can typically choose from a large number of
actions, such as moving the many available pieces on the board. This leads
to a large branching factor in the search space.

“marl-book-main” — 2025/6/18 — 20:07 — page 282 — #311

282 Chapter 9

Long horizon Reaching a terminal state (i.e., win/lose/draw) can require tens
or even hundreds of moves in some games. Therefore, the agents may have
to explore long sequences of actions before they receive any reward.

We can think of such games as a tree, in which each node represents a game
state, and each outgoing edge from a node represents a possible action choice
for the player whose turn it is in the node. A terminal state is represented by
a leaf node that has no outgoing edges. The above aspects mean that the tree
can be both very wide (many actions leading to large branching factor) and
very deep (many actions needed to reach a terminal state), and that only the leaf
nodes can give a non-zero reward. With a limited compute budget, it is typically
infeasible to fully explore such complex game trees.

A standard approach to tackle such games is to use heuristic search algorithms
such as alpha-beta minimax search, which expands a search tree from each
encountered state of the game to compute an optimal action for that state. Such
algorithms rely heavily on specialized evaluation functions that are used to
guide the search, as well as many other domain-specific adaptations (Levy
and Newborn 1982; Campbell, Hoane Jr., and Hsu 2002). This makes such
algorithms highly specialized for a specific game, and difficult to adapt to other
games. Moreover, the heuristic design choices in such algorithms can limit
their achievable performance, for example, due to inaccuracies in heuristic
evaluations of game states.

Monte Carlo tree search (MCTS) is a sampling-based method that, similar
to alpha-beta search, expands a search tree from the game state but does not
require knowledge of specialized evaluation functions (however, if available,
such knowledge can also be used in MCTS to further improve its performance).
MCTS algorithms grow the search tree by generating a number of simulations
from the game state, where each simulation is produced by sampling actions
based on information contained in the current search tree. MCTS is essentially
a reinforcement learning method in that it can use the same action selection
mechanisms and temporal-difference learning operators. However, while re-
inforcement learning algorithms aim to learn complete policies that choose
optimal actions in each state, the focus in MCTS is to compute optimal actions
for the current state of the game rather than complete policies.

Algorithms that use MCTS in combination with policy self-play and deep
learning have achieved “super-human” performance in several games, including
chess, shogi, and Go (Silver et al. 2016; Silver et al. 2017; Silver et al. 2018;
Schrittwieser et al. 2020). These algorithms use a self-play approach (specif-
ically, “policy self-play” as described in Section 5.5.1) whereby an agent’s

“marl-book-main” — 2025/6/18 — 20:07 — page 283 — #312

Multi-Agent Deep Reinforcement Learning 283

policy is trained against itself. In this section, we will describe one such algo-
rithm called AlphaZero (Silver et al. 2018). The section begins by describing a
general MCTS algorithm for Markov decision processes, based on which we
will introduce policy self-play in MCTS for zero-sum turn-taking games with
fully observable states and actions. The AlphaZero algorithm uses this self-
play MCTS algorithm in combination with deep learning to learn an effective
evaluation function for the game.

9.8.1 Monte Carlo Tree Search

The pseudocode for a general MCTS algorithm in a Markov decision process
is shown in Algorithm 25. In each state st, the algorithm performs k simula-
tions17 ŝτ , âτ , r̂τ , ŝτ+1, âτ+1, r̂τ+1, ŝτ+2, âτ+2, r̂τ+2, ... (where k is a parameter of
the MCTS algorithm) by sampling actions and growing the search tree. We
use the notation ŝτ , âτ , and r̂τ to refer to the states, actions, and rewards in a
simulation, respectively, starting with state ŝτ = st and time τ = t. To simplify
the pseudocode, we implicitly assume that ŝτ refers to both a state and a corre-
sponding node in the search tree; hence, we do not introduce explicit notation
to represent trees and nodes. The algorithm can either use the state transition
function T , if this is known, or it can use a simulation model T̂ as described in
Section 3.6. Note that, rather than building a new tree in each state st, MCTS
continually uses and grows the tree across all episodes and time steps.

Each node in the search tree carries certain statistics used by the algorithm.
In particular, each node ŝτ contains a counter N (̂sτ , â) that counts the number of
times that action â was tried in state ŝτ , and an action-value function Q(̂sτ , â) to
estimate the value (i.e., expected return) of each action in the state. When a new
node ŝτ is created and added to the tree, the function InitializeNode(̂sτ) sets the
counter and action-value function to zero, that is, N (̂sτ , â) = 0 and Q(̂sτ , â) = 0
for all â∈A.

To generate a simulation, the function ExploreAction(̂sτ) returns an action to
be tried in each visited state ŝτ in the simulation. A basic way to sample actions
is ϵ-greedy action selection, such as used in Algorithm 3 (page 35). Another,
often used action selection method in MCTS is to first try each action once, and
then deterministically choose an action that has the highest upper confidence

17. Other terms used to refer to simulations in MCTS include “rollouts” and “playouts.” These
terms come from the original research focus of using MCTS in competitive board games. We prefer
the neutral term “simulation” since MCTS can be applied in a broad range of decision problems.

“marl-book-main” — 2025/6/18 — 20:07 — page 284 — #313

284 Chapter 9

Algorithm 25 Monte Carlo tree search (MCTS) for MDPs

1: Repeat for every episode:
2: for t = 0, 1, 2, 3, ... do
3: Observe current state st

4: for k simulations do
5: τ← t
6: ŝτ← st ▷ Perform simulation
7: while ŝτ is non-terminal and ŝτ -node exists in tree do
8: âτ←ExploreAction(̂sτ)
9: ŝτ+1∼T (· | ŝτ , âτ)

10: r̂τ←R(̂sτ , âτ , ŝτ+1)
11: τ← τ + 1
12: if ŝτ -node does not exist in tree then
13: InitializeNode(̂sτ) ▷ Expand tree

14: while τ > t do ▷ Backpropagate
15: τ← τ − 1
16: Update(Q, ŝτ , âτ)

17: Select action at for state st:
18: πt←BestAction(st)
19: at∼πt

bound (UCB),18 formally

âτ =

 â if N (̂sτ , â) = 0

arg maxâ∈A

(
Q(̂sτ , â) +

√
2 ln N (̂sτ)
N (̂sτ ,â)

)
otherwise

(9.90)

where N (̂s) =
∑

â N (̂s, â) is the number of times state ŝ has been visited. (If
multiple actions â have N (̂sτ , â) = 0, then we can choose them in any order.)
UCB assumes that the rewards r̂τ lie in the normalized range [0, 1] (Auer, Cesa-
Bianchi, and Fischer 2002). UCB action selection tends to be more effective
than ϵ-greedy action selection if only a relatively small number of actions can
be tried in a state. Moreover, the finite-sample estimation errors of UCB are
bounded when used in MCTS (Kocsis and Szepesvári 2006).

The simulation stops once a state ŝl has been reached that is a leaf node in the
search tree, meaning the state ŝl has never been visited and no corresponding

18. This version of UCB was originally called “UCB1” in the work of Auer, Cesa-Bianchi, and
Fischer (2002).

“marl-book-main” — 2025/6/18 — 20:07 — page 285 — #314

Multi-Agent Deep Reinforcement Learning 285

ExploreAction

ExploreAction

ExploreAction

InitializeNode

(a) Tree expansion

u

u

u

u

u

(b) Backpropagation

Figure 9.25: Tree expansion and backpropagation in MCTS. Each node in the
tree corresponds to a state. The tree is expanded by sampling actions (edges)
until a previously unvisited state ŝl is reached, and a new node for the state is
initialized and added to the tree (dashed circle). The new state ŝl is evaluated
via u = f (̂sl), and u is propagated back through the predecessor nodes in the tree
until reaching the root node (e.g., using Equation 9.91).

node exists in the search tree. The search tree is then expanded by using
InitializeNode(̂sl) to initialize a new node corresponding to ŝl. InitializeNode(̂sl)
can use an evaluation function f (̂sl) to get an initial estimate of the value of the
state ŝl. Such a value estimate could be obtained in different ways. If domain
knowledge is available, then a heuristic function f could be manually created
to compute value estimates based on the domain knowledge. For instance,
sophisticated evaluation functions have been created for the game of chess based
on vast amounts of expert knowledge (Levy and Newborn 1982; Campbell,
Hoane Jr., and Hsu 2002). More generally, a domain-agnostic approach could
be to sample actions uniform-randomly until a terminal state is reached, but
such an approach can be highly inefficient.

Once the new state ŝl has been initialized in the search tree and a value
estimate u = f (̂sl) is obtained, MCTS backpropagates u and the rewards r̂τ

through the nodes that have been visited in the simulation, starting with the
predecessor node ŝl−1 and following its predecessors until reaching the root
node. For each node ŝτ to be updated, the function Update(Q, ŝτ , âτ) increases
the counter N (̂sτ , âτ) = N (̂sτ , âτ) + 1, and the action-value function Q is updated.
In general, Q may be updated using any of the known temporal-difference

“marl-book-main” — 2025/6/18 — 20:07 — page 286 — #315

286 Chapter 9

learning rules used in RL (Section 2.6). For example, we may update Q(̂sτ , âτ)
using the off-policy Q-learning update rule with learning target r̂τ + γu if τ =
l− 1, and learning target r̂τ + γmaxa′∈A Q(̂sτ+1, a′) if τ < l− 1. However, if the
MDP is terminating (i.e., each episode will terminate at some point) and all
rewards are zero until a terminal state is reached, such as in the zero-sum board
games considered in this section, then u can be backpropagated directly via19

Q(̂sτ , âτ)←Q(̂sτ , âτ) +
1

N (̂sτ , âτ)
[
u−Q(̂sτ , âτ)

]
(9.91)

which computes the average value of u for state-action pair ŝτ , âτ . Note that, in
this case, if ŝ is a terminal state giving reward r̂ (such as +1 for win,−1 for lose),
then the evaluation u = f (̂s) should be equal or close to the reward r̂. Figure 9.25
depicts the process of expanding the search tree and backpropagating u through
the predecessor nodes.

After the k simulations have been completed, MCTS uses BestAction(st) to
select an action at for the current state st, based on the information stored in the
node corresponding to st. In general, BestAction(st) returns a probability distri-
bution πt over actions a∈A. A common choice is to select a most-tried action,
at ∈ arg maxa N(st, a), or an action with the highest value, at ∈ arg maxa Q(st, a).
After executing at and observing the new state st+1, the MCTS procedure repeats
and k simulations are performed in st+1, and so forth.

9.8.2 Self-Play MCTS

The idea of policy self-play is to train an agent’s policy against itself, meaning
the same policy is used to choose actions for each agent. This requires that
the agents in the game have symmetrical roles and egocentric observations,
such that the same policy can be used from the perspective of each agent. In
zero-sum board games, the focus of this section, agents have symmetric roles
since they are direct opponents (each agent is trying to defeat the other agent)
and they generally have access to the same types of actions.20 In contrast, if the
agents have non-symmetrical roles in the game, such as offense and defense
players in a football team, then using the same policy for each agent does not
make sense since the different roles require different actions.

19. Equation 9.91 additionally assumes an undiscounted return objective.
20. The self-play approach we describe in this section can also work even if the agents’ roles are
not completely symmetric. For example, the game of chess is not perfectly symmetric because
the white player makes the first move, which gives it a slight advantage; and the relative starting
positions of the king and queen differ between the two players. What matters is that we can define
egocentric observations and agents have access to the same actions, and that there are generalizable
characteristics over the agents’ roles. For example, in chess, many play strategies can be used by
both white and black players.

“marl-book-main” — 2025/6/18 — 20:07 — page 287 — #316

Multi-Agent Deep Reinforcement Learning 287

(a) Original state s (b) Transformed state ψ(s)

Figure 9.26: State transformation in chess. The state s is transformed to ψ(s) by
rotating the board by 180 degrees and swapping the color of the pieces.

An agent’s observation is egocentric if the information contained in the
observation is relative to the agent. In the chess example, in which agents
observe the full state of the game, the state may be represented as a vector
s = (i, x, y) where i is the number of the agent whose turn it is, x is a vector
containing the locations of agent i’s pieces (set to -1 if the piece was removed),
and y is a similar vector for the opponent’s pieces. Suppose agent 1 controls the
white pieces and its policy π1 is conditioned on this state vector. Therefore, π1

will assume that the information about white pieces is located in the x-part of
the state vector. To use agent 1’s policy π1 to control the black pieces for agent
2, we can transform the state vector s = (2, x, y) (in which x stores the locations
of the black pieces, and y for white pieces) by changing the agent number and
swapping the order of the x/y vectors, ψ(s) = (1, y, x). If we visualize the state s,
as shown in Figure 9.26, where white pieces are located at the top of the board
and black pieces are at the bottom, then the transformation ψ(s) corresponds to
rotating the board by 180 degrees and swapping the colors of the pieces from
black to white and vice versa. The transformed state ψ(s) can now be used by
agent 1’s policy to choose an action for agent 2, that is, a2∼π1(· |ψ(s)).

Given such a state transformation method, we can adapt the general MCTS
algorithm shown in Algorithm 25 to implement a policy self-play approach
for zero-sum games in which the agents take turns. Essentially, from the
perspective of agent 1, in self-play the MCTS simulations become a Markov
decision process in which agent 1 chooses the action in each time step. Using
ŝτi to denote the state and agent i whose turn it is to choose an action in that

“marl-book-main” — 2025/6/18 — 20:07 — page 288 — #317

288 Chapter 9

state, the self-play simulation process for agent 1 becomes:

π1 (̂sτ1)→ âτ→π1(ψ(̂sτ+1
2))→ âτ+1→π1 (̂sτ+2

1)→ âτ+2→π1(ψ(̂sτ+3
2))→ âτ+3...

(9.92)
To implement this process in the MCTS simulations, we modify the algorithm

to replace ŝτ with ŝτi to keep track of which agent is choosing the action in the
state, and in the function calls of ExploreAction (Algorithm 25), InitializeNode
(Algorithm 25), and Update (Algorithm 25) we input ŝτi if i = 1, and ψ(̂sτi) if
i ̸= 1. Additionally, since the evaluation u = f (̂sl) is always from the perspective
of agent 1 (e.g. +1 reward if agent 1 wins), in function Update when using
Equation 9.91 to update Q(̂sτi , âτ), we have to flip the sign of u if i ̸= 1. Thus,
these functions always operate on states as if it was agent 1’s turn in each state.
Note that MCTS controls agent 1, hence the time steps t in Algorithm 25 include
only the times in which it is agent 1’s turn.

The above version of self-play MCTS uses the current version of the policy
to select actions for each agent. This algorithm can be further modified by
training the policy not just against the current version of itself but also against
past versions of the policy. For example, we may maintain a set Π that contains
copies of agent 1’s policies (or the Q functions from which they are derived)
from different points of the training process. Using Π, the self-play MCTS
algorithm may sample any policy from this set when selecting actions for
agent 2. In this way, we may obtain a potentially more robust policy for agent 1
by forcing it to perform well against not just one specific policy (itself) but
also against past versions of the policy. Thus, Π serves a similar purpose to the
replay buffer D (Section 8.1.3), which is to reduce overfitting. We will explore
this idea in more depth in Section 9.9.

9.8.3 Self-Play MCTS with Deep Neural Networks: AlphaZero

AlphaZero (Silver et al. 2018) is based on MCTS with self-play against the
current policy, as described in the previous sections. Additionally, it uses a deep
convolutional neural network parameterized by θ to learn an evaluation function

(u, p) = f (s; θ) (9.93)

which, for any input state s, predicts two elements:

• u: The expected outcome of the game from state s, u≈E[z | s], where z is
either +1 for a win, −1 for a loss, and 0 for a draw. Thus, u estimates the
(undiscounted) value of state s.

• p: A vector of action selection probabilities in state s, with entries pa = Pr(a | s)
for each action a∈A, to predict the action probabilities computed by MCTS
in the BestAction function for state s.

“marl-book-main” — 2025/6/18 — 20:07 — page 289 — #318

Multi-Agent Deep Reinforcement Learning 289

AlphaZero learns these value estimates and action probabilities entirely from
self-play, starting with randomly initialized parameters θ and using stochastic
gradient descent to minimize a combined loss function

L(θ) = (z− u)2−π⊤ log p + c ||θ||2 (9.94)

with parameter c to control the weight of the squared L2-norm, ||θ||2 = θ⊤θ,
which acts as a regulariser to reduce overfitting. This loss is computed based on
data D = {(st,πt, zT)}, where for each episode in the MCTS algorithm (Algo-
rithm 25), st is the state at time t (Algorithm 25), πt is the action probability
distribution for state st computed in BestAction (Algorithm 25), and zT is the
game outcome in the last time step T of the episode. As usual, a mini-batch
of this data is sampled when computing the loss in stochastic gradient de-
scent. Thus, f (s) learns value estimates u to predict the outcome z, and action
probabilities p to predict the MCTS action probabilities π, for any given state s.

The action probability vector p is used in AlphaZero to guide the action
selection in the MCTS simulations. When expanding the search tree for new
node ŝl (Algorithm 25), the function InitializeNode(̂sl) computes (u, p) = f (̂sl; θ)
with the current parameters θ and, in addition to setting N (̂sl, â) = 0 and Q(̂sl, â) =
0, initializes action prior probabilities P(̂sl, â) = pâ for all â∈A. The function
ExploreAction (Algorithm 25) uses N, Q, P in a formula similar to the UCB
(Equation 9.90) method

âτ =

 â if N (̂sτ , â) = 0

arg maxâ∈A

(
Q(̂sτ , â) + C(̂sτ)P(̂sτ , â)

√
N (̂sτ)

1+N (̂sτ ,â)

)
otherwise

(9.95)
where C(̂s) in an additional exploration rate. Therefore, AlphaZero explores
actions similarly to UCB, but biases the action selection based on the predicted
probabilities p. After completing the MCTS simulations from the root node
st, AlphaZero uses a function BestAction(st) that selects an action at either
proportionally (for exploration/training) with respect to the root visit counts
N(st, ·), that is, at∼ N(st ,·)∑

a∈A N(st ,a) , or greedily at ∈ arg maxa N(st, a).
The complete specification of AlphaZero includes various additional imple-

mentation details about the network representation of f , the exploration rate C,
the addition of exploration noise in action probabilities, the sampling of data
batches to compute the loss, action masking, and so on. These details can be
found in the supplementary material of Silver et al. (2018). However, the core
idea behind AlphaZero is to learn an effective evaluation function f purely from
self-play MCTS, and to use this function to guide the tree search in a vast search
space in order to find optimal actions.

“marl-book-main” — 2025/6/18 — 20:07 — page 290 — #319

290 Chapter 9

AlphaZero (playing white) vs. Win Draw Loss

Stockfish (chess) 29.0% 70.6% 0.4%
Elmo (shogi) 84.2% 2.2% 13.6%
AlphaGo Zero (Go) 68.9% – 31.1%

Figure 9.27: AlphaZero match results reported by Silver et al. (2018). Results
show percentage of won/drawn/lost games for AlphaZero when playing white.

Silver et al. (2018) reported results for AlphaZero in the games of chess,
shogi, and Go, in which it was matched against several strong game-playing
programs: “Stockfish” for chess, “Elmo” for shogi, and AlphaGo Zero (Silver
et al. 2017) for Go trained for three days. In each game, AlphaZero performed
k = 800 MCTS simulations in each state st. Separate instances of AlphaZero
were trained for nine hours (fourty-four million games) in chess, twelve hours
(twenty-four million games) in shogi, and thirteen days (140 million games) in
Go. Based on Elo rating (Elo 1960), AlphaZero first outperformed Stockfish
after four hours, Elmo after two hours, and AlphaGo Zero after thirty hours.
Figure 9.27 shows the reported match results for the final trained instances of
AlphaZero (when playing white) in the three games. AlphaZero was able to
achieve this performance using the same general self-play MCTS method in
each game, without requiring heuristic evaluation functions based on expert
knowledge.21 While Stockfish and Elmo evaluated approximately sixty million
and twenty-five million states per second, respectively, AlphaZero evaluated
only about sixty thousand states per second in chess and shogi. AlphaZero
compensated for the lower number of evaluations by using its deep neural
network to focus more selectively on promising actions.

9.9 Population-Based Training

Policy self-play, as presented in Section 9.8, requires that the agents in the game
have symmetrical roles and egocentric observations, such that the same policy
can be used from the perspective of each agent. Specifically, in Section 9.8 we
focussed on symmetrical zero-sum games with two agents. Can we generalize
policy self-play to general-sum games with two or more agents?

21. However, AlphaZero did use domain knowledge in the construction of the input and output
features of f (e.g., legality of castling, repetition count for current position, underpromotions for
pawn moves, piece drops in shogi, and so on).

“marl-book-main” — 2025/6/18 — 20:07 — page 291 — #320

Multi-Agent Deep Reinforcement Learning 291

We already discussed one type of generalization of policy self-play at the end
of Section 9.8.2, in which an agent’s policy is trained not just against itself, but
also against a distribution over past versions of its policy. In doing so, we can
potentially obtain a more robust policy by training it against a diverse population
of policies, thereby reducing overfitting to itself. The term “population” is used
in this context because the number of policies in the population can grow over
successive generations (also called “epochs”), and the policies may change and
adapt in each generation to perform better within the population.

Population-based training generalizes this idea to work in general-sum
games with two or more agents, in which the agents may have different (non-
symmetric) roles, actions, and observations. Essentially, the idea is to maintain
multiple policy populations Πk

i , one for each agent i∈ I in the game, and to
grow and modify each population with respect to the other populations over
successive generations k = 1, 2, 3, The general steps in population-based
training can be summarized as follows:

Initialize populations: Create an initial policy population Π1
i for each agent

i. For example, each population may start with a single uniform policy
that selects actions uniform-randomly. If domain knowledge or recorded
data of past interactions are available, then other types of policies could be
created for the initial populations.

Evaluate populations: In generation k, evaluate the current policies πi ∈Πk
i

in each agent’s population to measure the performance of each policy (e.g.,
based on expected returns or Elo ranking) with respect to the policies in
the other populations. For example, this can be done by running episodes
with different combinations of policies from the populations.

Modify populations: Based on the evaluations of policies πi ∈Πk
i in each

population, modify the existing policies and/or add new policies to the
populations. For example, existing policies could be modified by making
random changes to their parameters, or by copying the parameters of better-
performing policies in the same population (Jaderberg et al. 2017). New
policies could be created by training new policies against some distribution
over the policies in other populations, or by creating new policies that
optimize a type of best-response diversity (Rahman, Fosong, et al. 2023).

Once the populations have been modified, we have a new generation of
populations Πk+1

i for each agent i and the process repeats by reevaluating the
new populations, followed by further modifications to the policies, and so on.
The process terminates after a predetermined number of generations, or once

“marl-book-main” — 2025/6/18 — 20:07 — page 292 — #321

292 Chapter 9

some other termination criterion is achieved such as reaching a certain average
performance of policies in each population.

Variants of this population-based training approach have been successfully
applied in diverse complex games (e.g., Lanctot et al. 2017; Jaderberg et
al. 2019; Liu et al. 2019; Vinyals et al. 2019). In the next subsection, we
will describe a general variant of population-based training called policy space
response oracles (PSRO) (Lanctot et al. 2017), which can directly incorporate
the notion of best-response policies and game-theoretic solution concepts from
Chapter 4 as sub-routines. PSRO can be applied to optimize policies in general-
sum games with two or more agents and full or partial observability. We will
then discuss a complex MARL algorithm called AlphaStar (Vinyals et al. 2019)
which, among other components, uses population-based training and was the
first algorithm to reach top-level performance in the full game of StarCraft II.

9.9.1 Policy Space Response Oracles

Policy space response oracles (PSRO) (Lanctot et al. 2017), itself based on the
double oracle algorithm (McMahan, Gordon, and Blum 2003), refers to a family
of population-based training algorithms that learn policies in general-sum games
with full or partial observability and two or more agents (e.g., a POSG or any
other game model defined in Chapter 3). PSRO builds on empirical game-
theoretic analysis (e.g., Wellman 2006), which constructs a meta-game as an
abstraction of the underlying game G, and applies equilibrium analysis to the
meta-game. A meta-game is a finite normal-form game in which the possible
actions of the agents correspond to specific policies πi in the underlying game G
and the reward functionsRi(π1, ...,πn) of the meta-game give the average return
for agent i in the game G if the agents select policies π1, ...,πn. The important
benefit of meta-games is that they allow for tractable approximate equilibrium
computation by limiting the sets of possible policies the agents can choose in G.

PSRO constructs such meta-games in each generation of the population-based
training to evaluate and grow the policy populations. The pseudocode of PSRO
is given in Algorithm 26, and the main steps are shown in Figure 9.28. We
detail the steps in the following paragraphs.

PSRO starts by initializing the populations Π1
i , for each agent i, to contain

one or more randomly generated policies. Then, in each generation k, PSRO
constructs a meta-game (i.e., normal-form game) Mk in which the action space
of each agent is set as the current population of the agent, that is, Ai =Πk

i . The
reward Ri(π1, ...,πn) for each agent i when agents use policies π1, ...,πn in
the meta-game Mk is estimated empirically, by running one or more episodes
of the underlying game G using the policies π1, ...,πn and averaging agent

“marl-book-main” — 2025/6/18 — 20:07 — page 293 — #322

Multi-Agent Deep Reinforcement Learning 293

Algorithm 26 Policy space response oracles (PSRO)

1: Initialize populations Π1
i for all i∈ I (e.g., random policies)

2: for each generation k = 1, 2, 3, ... do
3: Construct meta-game Mk from current populations {Πk

i }i∈I

4: Use meta-solver on Mk to obtain distributions {δk
i }i∈I

5: for each agent i∈ I do ▷ Train best-response policies
6: for each episode e = 1, 2, 3, ... do
7: Sample policies for other agents π−i∼ δk

−i

8: Use single-agent RL to train π′
i wrt. π−i in underlying game G

9: Grow population Πk+1
i ←Πk

i ∪ {π′
i }

i’s returns from these episodes. Thus, in the limit of running infinitely many
episodes, the reward will converge to the expected return of the agent, that is,
Ri(π1, ...,πn) = Ui(π1, ...,πn). The construction of the meta-game Mk completes
the population evaluation step.

Given the meta-game Mk, PSRO uses a so-called “meta-solver” to compute
probability distributions δk

i for each population Πk
i , where δk

i (πi) is the probabil-
ity assigned to policy πi ∈Πk

i . For example, the meta-solver may compute any
of the solution concepts discussed in Chapter 4, such as Nash equilibrium.22 To
avoid situations in which δk

i concentrate their probability masses on a small num-
ber of policies, which could potentially lead to overfitting of policies learned by
PSRO, the original PSRO method enforces a lower bound δk

i (πi) > ϵ for each
policy πi ∈Πk

i , where ϵ> 0 is a parameter (Lanctot et al. 2017). Other types of
distributions may be computed based on the requirements of the game, such as
in AlphaStar discussed in Section 9.9.3.

Based on Mk and the population distributions δk
i , PSRO uses an oracle to

compute a new policy π′
i to add to each agent’s population. The standard oracle

used in PSRO computes a best-response policy in the game G with respect to
the distribution δk

−i(π−i) =
∏

j̸=i δ
k
j (πj):

π′
i ∈ arg max

πi

Eπ−i∼δk
−i

[
Ui(⟨πi,π−i⟩)

]
(9.96)

Such a best-response policy π′
i can be obtained by using a single-agent RL

algorithm to train π′
i over multiple episodes in the underlying game G, where in

each episode the policies of the other agents j ̸= i are sampled as πj∼ δk
j . Note

22. With some small modifications, it is also possible to use a correlated equilibrium meta-solver to
compute a joint distribution δk over the joint-policy space Πk =Πk

1 × ...×Πk
n, where δk(π) is the

probability assigned to join policy π ∈Πk (Marris et al. 2021).

“marl-book-main” — 2025/6/18 — 20:07 — page 294 — #323

294 Chapter 9

(a) Construct meta-game (b) Solve meta-game

? ? ? ? ?

?

?

?

?

(c) Add new policies via oracle

Figure 9.28: Steps in PSRO for a two-agent game, at generation k. (a) Construct
a meta-game Mk based on the current policy populations {Πk

i }i∈I . The cells
show the estimated average returns for each agent (we show example values
for illustration purposes) when they use the respective policies from the row
and column. (b) Use meta-solver on Mk to obtain distributions δk

i for each
population (e.g., Nash equilibrium). The shown bars on the left and top represent
probabilities assigned by δk

i to the respective policies in the population. (c) Use
the oracle to compute a new policy (e.g., best-response policy) π′

i for each agent
i with respect to the other populations Πk

−i and distributions δk
−i, and add π′

i

to the population Πk
i . PSRO then repeats these steps, where step (a) estimates

values for the missing entries for the new policies π′
i (marked by “?”)

“marl-book-main” — 2025/6/18 — 20:07 — page 295 — #324

Multi-Agent Deep Reinforcement Learning 295

that, in this case, the policy π′
i may only be an approximate best response if the

RL training does not converge in the given training budget, or if it converges to
a local optimum. The computation of best-response policies π′

i (Algorithm 26
of Algorithm 26) can be done in parallel for each agent i∈ I.

Once we have the new best-response policies π′
i for each agent i, PSRO adds

the policies to the respective populations to obtain the next generation, i.e.

Πk+1
i =Πk

i ∪ {π′
i }. (9.97)

PSRO then repeats the above steps, constructing a new meta-game Mk+1 to
reevaluate the populations (i.e., computing the new entries inRi for the newly
added policies), meta-solving Mk+1 and adding further policies to the pop-
ulations, and so on. This process terminates after a predefined number of
generations, or if the new best-response policies π′

i are already contained in
their respective populations Πk

i for each i, in which case the process has reached
a fixed point.

The basic version of PSRO presented here can be computationally expensive
and difficult to scale to many agents. Constructing a meta-game Mk involves
sampling potentially many episodes in the underlying game for each joint policy
π ∈Πk

1× ...×Πk
n, and this space of joint policies grows geometrically with the

size of the populations. Solving Mk via Nash equilibrium also has exponential
complexity (see Section 4.11) and the added problem of non-uniqueness (see
Sections 4.7 and 5.4.2). Finally, using RL to compute best-response policies can
also be costly depending on the complexity of the underlying game. To address
these computational bottlenecks, a number of improvements for PSRO have
been developed that make the method more computation-efficient and scalable
(e.g., Lanctot et al. 2017; Balduzzi et al. 2019; McAleer et al. 2020; Muller
et al. 2020; Smith, Anthony, and Wellman 2021). In Section 9.9.3, we will see
how the algorithm AlphaStar builds on PSRO ideas to learn strong policies in a
very complex, high-dimensional multi-agent game.

9.9.2 Convergence of PSRO

If PSRO uses a meta-solver that computes exact Nash equilibria for a meta-game,
and an oracle that computes exact best-response policies in the underlying game
G, then the distributions {δk

i }i∈I converge to a Nash equilibrium of G. To see
why this happens, we can consider two questions: Is PSRO always guaranteed
to converge? And when it does converge, is the outcome guaranteed to be a
Nash equilibrium?

We assume a finite underlying game G (i.e., with finite sets of agents, actions,
states, and observations) that terminates after a finite number of time steps.
The first thing to note is that, for any distribution δk

−i for agents −i, there will

“marl-book-main” — 2025/6/18 — 20:07 — page 296 — #325

296 Chapter 9

always be a deterministic best-response policy π′
i for agent i. This is because,

by fixing the policies of other agents according to π−i∼ δk
−i, the underlying

game G reduces to a finite MDP if G is a stochastic game, or to a finite POMDP
if G is a POSG. In both cases, we know (see Chapter 2) that there always
exist deterministic optimal policies π′

i for the MDP/POMDP. While there may
also exist stochastic (i.e., not deterministic) optimal policies, these need not
be considered by the oracle, since any stochastic policy can be obtained by a
probabilistic mixture of deterministic policies, which can be achieved via the
distributions δk

i (we will see an example of this below). Furthermore, since G
has finite episodes, there are a finite number of deterministic policies that can
be enumerated for G.

All of the above means that there is a finite set of deterministic best-response
policies π′

i ∈Π′
i for each agent i in G that the oracle can select from in each

generation k. In the worst case, PSRO will need to add all best-response poli-
cies from Π′

i to the population Πk
i for each agent i before it terminates (recall

that PSRO terminates in generation k if the oracle’s selected policies π′
i are

already contained in the populations Πk
i for each agent i, respectively). There-

fore, returning to the first question above, we know that PSRO will eventually
converge. In other games it may be possible for PSRO to converge much earlier,
by reaching a point where the new best-response policies π′

i selected by the
oracles are already contained in the respective agent populations Πk

i . At that
point, by the definition of the Nash equilibrium (Section 4.4), we know that no
agent can unilaterally select a best-response policy π′

i ∈Π′
i that is not already

contained in Πk
i in order to improve its expected returns against the distribu-

tion δk
−i. Therefore, returning to the second question above, we know that if

PSRO converges then the outcome {δk
i }i∈I must be a Nash equilibrium in the

underlying game G.
To illustrate these points, we give two examples in non-repeated matrix games

with two agents (the reward matrices are shown in Figure 3.2, page 46). As a
convenient shorthand, we will say “action X” to refer to the deterministic policy
that assigns probability 1 to action X.

First, consider the non-repeated Rock-Paper-Scissors game. Suppose PSRO
initializes the populations so that agent 1’s initial population Π1

1 contains action
R, and agent 2’s initial population Π1

2 contains action P. Figure 9.29 shows
the populations Πk

i , distributions δk
i , and best responses π′

i for both agents over
generations k = 1, ..., 5. It can be seen that PSRO converges to the unique Nash
equilibrium of the game, in which both agents randomize uniformly. However,
since this equilibrium assigns positive probability to all joint actions, PSRO will
need to add all deterministic policies (i.e., actions) in both populations before it
converges. At generation k = 5, in which both populations contain all actions,

“marl-book-main” — 2025/6/18 — 20:07 — page 297 — #326

Multi-Agent Deep Reinforcement Learning 297

k Πk
1 Πk

2 δk
1 δk

2 π′
1 π′

2

1 R P 1 1 S P

2 R,S P (0, 1) 1 S R

3 R,S R,P (2
3 , 1

3) (2
3 , 1

3) P R/P

4 R,P,S R,P (0, 2
3 , 1

3) (1
3 , 2

3) R S

5 R,P,S R,P,S (1
3 , 1

3 , 1
3) (1

3 , 1
3 , 1

3) R/P/S R/P/S

Figure 9.29: PSRO in the non-repeated Rock-Paper-Scissors matrix game. The
table shows the populations Πk

i , distributions δk
i , and best responses π′

i for
both agents over generations k = 1, ..., 5. New entries in populations are shown
underlined. At k = 3, R/P for π′

2 means that both actions are best responses and
the oracle can select one of them (and same at k = 5 for R/P/S). PSRO converges
to the unique Nash equilibrium in which both agents randomize uniformly.

any best responses π′
1,π′

2 will already be contained in the populations Π5
1,Π5

2,
respectively, and hence PSRO terminates.

Next, consider the non-repeated Prisoner’s Dilemma game. Suppose PSRO
initializes the populations Π1

i of both agents to contain the defect action. Since
the populations contain only single policies, the distributions δ1

i will assign
probability 1 to these policies. The oracle will then return the defect action as
the only best-response π′

i for each agent, which is already contained in both
populations. Hence, in this example, PSRO converges to the unique Nash
equilibrium of the game (in which both agents defect) without enumerating all
possible deterministic policies.

Note that the above assumes exact meta-games Mk, in which the meta re-
wards are equal to the expected returns of the agents, that is, Ri(π1, ...,πn) =
Ui(π1, ...,πn) for all i∈ I and all joint policies (π1, ...,πn) from the populations
Πk

1, ...,Πk
n. It also assumes exact best-responses π′

i for each agent. Both as-
sumptions will likely not hold in practice, since Mk is constructed using a finite
number of sampled game episodes under the different joint policies,23 and since
the best-response policies π′

i are learned using a RL algorithm.
For other combinations of meta-solvers and oracles, PSRO will evolve dif-

ferent policy populations and may converge to different solution types (e.g.,
Muller et al. 2020; Marris et al. 2021).

23. Theoretical bounds exist on the number of sampled episodes required such that a Nash equilib-
rium in the estimated meta-game is also a (approximate) Nash equilibrium in the exact meta-game
(Tuyls et al. 2020).

“marl-book-main” — 2025/6/18 — 20:07 — page 298 — #327

298 Chapter 9

9.9.3 Grandmaster Level in StarCraft II: AlphaStar

StarCraft II is a popular real-time strategy game in which two or more players
collect resources and build armies consisting of diverse units (e.g., infantry,
tanks, aircraft) in order to defeat each other in battle. StarCraft II shares all
the difficulties outlined at the beginning of Section 9.8: players can choose
from a very large set of possible actions, and each match can involve many
thousands of sequential actions before a terminal state (win or lose) is reached.
In addition, players in StarCraft II only have a limited view of the environment:
they only see what the units in their army see within their limited view regions.
Moreover, the three different races available in StarCraft II (Terran, Protos,
Zerg) offer different units and require different play strategies. These aspects
make StarCraft II a highly complex game, and its popularity has led to a
large and active community of professional human players that compete in
international electronic sports events. In the year 2019, AlphaStar (Vinyals
et al. 2019) was the first artificial agent to reach Grandmaster level in the full
game of StarCraft II,24 placing it above 99.8 percent of officially ranked human
players according to the ranking metric used in StarCraft II. AlphaStar achieved
this performance by using a combination of RL and population-based training.

At its core, AlphaStar trains a policy π(at
i | ht

i, z; θi) for each race parameter-
ized by θi, which assigns probabilities to actions at

i at time t, given the history
of observations and actions ht

i = (o0
i , a0

i , o1
i , a1

i , ..., ot
i), and a vector z which sum-

marizes a strategy based on human data (detailed below). An observation ot
i

contains an overview map of the environment (akin to the minimap observed by
human players) and a list of visible friendly and enemy units with associated
attributes (e.g., remaining health points). An action at

i specifies the action type
(e.g., move, build, attack), what unit to issue the action to, the target of the
action (e.g., where to move), and when the agent wants to select its next action.
AlphaStar receives a reward of +1 for winning, −1 for losing, and 0 for a draw
outcome; and 0 rewards at all other times. No discounting is used in the learning
objective, to reflect the true goal of winning the game.

As human players are limited by physical constraints when playing the game,
various constraints were put in place for AlphaStar in order to ensure a fair
match against humans. For example, agents were limited to executing at most
twenty-two non-duplicate actions in a five second time window.

The action representation used in AlphaStar results in approximately 1026

possible actions an agent can choose from in a time step. Exploring such a

24. The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al. 2019) provides a smaller
version of StarCraft II and has been used widely in MARL research; see Section 11.3.3.

“marl-book-main” — 2025/6/18 — 20:07 — page 299 — #328

Multi-Agent Deep Reinforcement Learning 299

vast search space from scratch is intractable, especially since the only non-
zero rewards are obtained in terminal states after many thousands of sequential
actions. Therefore, AlphaStar uses human play data to initialize the policies.
Prior to any RL training, each policy is trained via supervised learning to imitate
human actions based on recorded matches played by human players. From
each match replay, a statistic z is extracted which encodes information about the
human player’s strategy, such as the order of constructed buildings and statistics
about units during the match. The policy is then trained to predict the human
action at

i given only the history ht from the match or also z. By extracting a
diverse set of statistics z from the recorded matches and conditioning the policy
on z, the policy is able to produce diverse strategies.

Following policy initialization, AlphaStar uses a range of deep learning
and RL techniques based on A2C (Section 8.2.4) to train a policy against a
distribution of opponent agents (i.e., the oracle in PSRO). The policy is either
conditioned on a statistic z and the agent receives a reward for following the
strategy corresponding to z; or it is only conditioned on the history ht and free
to choose its own actions. In both cases, the agent is penalized when the action
probabilities deviate from the initial (supervised) policy. While the details of
the RL techniques are important for the training performance of AlphaStar,
for the purpose of this section, we will focus on the population-based training
component used in AlphaStar. We refer to the original publication (Vinyals
et al. 2019) for details on the used deep learning architectures and RL methods.

AlphaStar uses a type of population-based training called “League training,”
which follows a similar approach to PSRO. AlphaStar maintains a single league
(population) Πk of policies corresponding to three different types of agents for
each race: main agents, main exploiter agents, and league exploiter agents. The
three types of agents differ in the distributions δk

i of opponents from the league
against which they are trained, at which points in training their current policies
(i.e., parameters) are added to the league, and when their policies are reset to
the initial parameters obtained from the supervised learning stage.

Let Πk be the current league at generation k, which contains past policy
copies of the three agent types from different points in the training. For a given
policy π′

i ∈Πk, AlphaStar uses a method called prioritized fictitious self-play
(PFSP) to compute a distribution δk

i over policies πi in a subset of Πk against
which to train π′

i , defined as

δk
i (πi) ∝ f

(
Pr[π′

i wins against πi]
)

(9.98)

where f : [0, 1]→ [0,∞) is a weighting function. AlphaStar uses two types of
weighting functions:

“marl-book-main” — 2025/6/18 — 20:07 — page 300 — #329

300 Chapter 9

• fhard(x) = (1− x)p, where p∈R+ is a parameter, leads PFSP to focus on the
most difficult opponent policies for π′

i . This is the default choice for f .
• fvar(x) = x(1− x) leads PFSP to focus on opponent policies that are at a similar

level of performance as π′
i .

The probability Pr[π′
i wins against πi] is estimated empirically by running

multiple matches of π′
i versus πi and recording the average win rate for π′

i .
Based on the above, the details of the three agent types used in the league are

as follows:

• Main agents (one per race) are trained with a proportion of: 35 percent in
self-play, in which the currently learning policy of the main agent is matched
against itself (as described in Section 9.8.2); 50 percent over the past policies
of all agent types in Πk using probabilities given by PFSP; and another
15 percent against past policies of main exploiters with probabilities given
by PFSP. The policies of main agents are frozen and added to the league
every 2x109 training time steps. Main agents are never reset to the initial
parameters.

• Main exploiter agents (one per race) are trained against the main agents to
exploit their weaknesses. With a proportion of 50 percent, or if their current
estimated probability of winning is less than 0.20, exploiter agents are trained
against past main agent policies in the league with probabilities given by
PFSP using weighting function fvar. The other 50 percent of training is done
against the currently learning policies of the main agents. Main exploiter
agents are added to the league when they manage to defeat all three main
agents in at least 70 percent of the played matches, or after 4x109 training
time steps. Their parameters are then reset to the initial parameters.

• League exploiter agents (two per race) are trained against all of the policies
contained in the league, to identify strategies that no policy in the league is
effective against. They are trained against policies in Πk using probabilities
given by PFSP, and they are added to the league if they manage to defeat all
policies in the league in at least 70 percent of the played matches, or after
2x109 training time steps. At that point, with a probability of 0.25, their
parameters are reset to the initial parameters.

For the matches against top-level human players reported by Vinyals et
al. (2019), AlphaStar initialized the policies via supervised learning based
on a publicly available dataset of 971,000 anonymised matches with human
players that ranked in the top 22 percent on the StarCraft II metric “Match
Making Rating” (MMR), which is similar to the Elo ranking used in chess
(see Section 9.8.3). After fourty-four days of League training using thirty-two
third-generation tensor processing units (TPUs) (Jouppi et al. 2017), the final

“marl-book-main” — 2025/6/18 — 20:07 — page 301 — #330

Multi-Agent Deep Reinforcement Learning 301

trained main agents corresponding to the three races were evaluated in matches
against human players (under an anonymous account) via the official online
match-making system used in StarCraft II. The main agents were evaluated
without conditioning on the statistics z in the policy. The final main agents
achieved MMR ratings that placed them above 99.8 percent of officially ranked
human players, and at “Grandmaster” level for all three races. Interestingly,
the initial policies after supervised learning already achieved a fairly strong
performance, ranking them above 84 percent of human players. Vinyals et
al. (2019) showed that without using the human play data to initialize policies,
the performance of AlphaStar degrades very substantially as the search space
becomes too difficult to explore from scratch. It is worth noting that, similarly
to AlphaZero (Section 9.8.3), AlphaStar was able to achieve this superior
performance using general deep learning and RL methods. These methods
could similarly be applied to other multi-agent decision problems that require
complex planning and interactions over long timescales.

9.10 Summary

This chapter has presented a range of “deep” MARL algorithms that build on
deep learning methods to learn policies in complex environments. The main
concepts are summarized as follows:

• In deep MARL, different training and execution paradigms have played a
significant role in how algorithms are developed and used. The concept
of centralized information includes information that may be shared across
agents, such as parameters, gradients, observations, actions, or anything
else that is not typically included in an agent’s observation space. Three
paradigms are discussed: In centralized training and execution, agents learn
and operate by sharing centralized information throughout both training and
execution phases. In decentralized training and execution, agents are isolated,
neither sharing information nor communicating with each other, ensuring
fully independent learning based solely on their local observations. Lastly,
centralized training and decentralized execution (CTDE) represents a hybrid
and popular approach. Agents utilize centralized information to facilitate
learning during the training phase. However, agents learn policies that are
only conditioned on the local observations, thus enabling a fully independent
execution of their policies.

• Independent learning is a class of MARL algorithms in which agents indepen-
dently use single-agent RL to to learn their policies. This class of algorithms

“marl-book-main” — 2025/6/18 — 20:07 — page 302 — #331

302 Chapter 9

in deep MARL can sometimes reach similar performance to more compli-
cated methods despite its relative simplicity. Independent learning algorithms
can be utilized with the decentralized training and execution paradigm.

• The first extension of independent learning we discuss are MARL algorithms
based on the multi-agent policy gradient. These algorithms typically learn a
centralized value function to consider that the returns an agent receives are
also dependent on the policies of other agents. We introduced centralized
critics V(ht

i, zt; θi), which are not only conditioned on an agent’s observation
history but also centralized information zt such as the observations of other
agents. The same methodology can be extended to centralized action-value
critics by learning a action value Q(ht

i, zt, at; θi), which is also conditioned on
the joint action.

• Value decomposition algorithms are designed to address environments (i.e.,
games) with common rewards. These algorithms attempt to find the contri-
bution of each individual agent to a common reward signal. This problem
is also known as the multi-agent credit assignment problem and it is com-
monly solved by attempting to factorize the joint-action value functions by
assuming that it can be approximated using simpler functions, for example,
Q(s, ⟨a1, a2, a3⟩)≈Q(s, ⟨a1, a2⟩) + Q(s, ⟨a1, a3⟩). Value decomposition net-
works (VDN) is such an algorithm that assumes that Q(s, ⟨a1, a2, a3, …⟩)≈
Q(a1) + Q(a2) + Q(a3) + …, and thus learning a value functions for each agent
that sum up to the environment’s expected common returns. Similarly, QMIX
approximates the joint action as a linear combination (albeit with monotonic
requirements) of the individual action-values.

• Agent modeling is concerned with learning models of other agents to inform
the policy or value functions of the modeling agent. For example, an agent
model can be trained to reconstruct the policies of other agents. By repre-
senting such agent models as neural networks, the agent models can further
generalize to unseen states. Instead of reconstructing the policies of other
agents, agent models can also learn compact representations of the policies
of other agents. By condition policies and value functions on such compact
representations, agents can learn to act with respect to the policies of other
agents and more efficiently learn to adapt to their policies.

• Deep MARL algorithms may be able to benefit from experience or param-
eter sharing. This methodology was inspired after observing that in some
environments, the optimal joint policy π∗ is composed of (nearly) identical in-
dividual policies, that is, π∗

1 =π∗
2 =π∗

3 = …. Parameter sharing works in such
environments, by using shared parameters for the policy or value functions,
and substantially improves both the efficiency of gradient descent and limits

“marl-book-main” — 2025/6/18 — 20:07 — page 303 — #332

Multi-Agent Deep Reinforcement Learning 303

the search space. Similarly experience sharing consists of sharing trajectories
collected by the agents between them, in order to train independent policies
with more a more diverse batch of experience.

• Chess, Go, and other zero-sum games with particularly large state spaces
have inspired a class of policy self-play algorithms that train a single policy
by letting it play against itself. AlphaZero is a self-play algorithm that uses
Monte Carlo tree search (MCTS) in each encountered state, a sampling-based
tree search algorithm that can look ahead to find the optimal move for the
current state. AlphaZero was able to learn champion-level policies in diverse
zero-sum games, including chess, shogi, and Go.

• Population-based training generalizes the idea of self-play to general-sum
games with two or more agents and full or partial observability. These
algorithms maintain populations (i.e., sets of) of policies for each agent,
and evolve these populations over multiple generations by evaluating and
modifying the policies in the populations. Policy space response oracles
(PSRO) is a population-based training algorithm that generates meta-games
in each generation, which are normal-form games in which the actions for
each agent correspond to the policies in their populations, and the rewards
for a joint action (i.e., combination of policies) correspond to the agents’
expected returns when using these policies in the underlying game. PSRO
uses game-theoretic solution concepts such as Nash equilibrium to compute
distributions over the agents’ policies in their populations, based on which an
oracle function computes new policies for each agent (normally best-response
policies with respect to the distributions) and adds those policies to the agents’
respective populations. AlphaStar is an algorithm that operates like PSRO
(with some modifications) and was able to achieve Grandmaster level in the
game of StarCraft II.

In this chapter, we have discussed various deep MARL algorithms that
use deep learning techniques to learn policies in high-dimensional, partially
observable multi-agent environments. We have covered important concepts
and strategies used in these algorithms to tackle challenges such as partial
observability, non-stationarity, multi-agent credit assignment, and equilibrium
selection. Next, we move from theory to practice. In the upcoming chapter, we
will show how some of these MARL concepts can be implemented in practice.

“marl-book-main” — 2025/6/18 — 20:07 — page 304 — #333

“marl-book-main” — 2025/6/18 — 20:07 — page 305 — #334

10 Multi-Agent Deep Reinforcement Learning in
Practice

In this chapter, we will dive into the implementation of MARL algorithms. The
book comes with a codebase,1 which is built using Python and the PyTorch
framework, and it implements some of the key concepts and algorithms we have
discussed in earlier chapters. The codebase provides a practical and easy-to-use
platform for experimenting with MARL algorithms. The goal of this chapter
is to provide an overview of how these algorithms are implemented in the
codebase, and provide the reader with an understanding of coding patterns that
are repeatedly found in MARL algorithm implementations.

This chapter assumes knowledge of the Python programming language and
a basic understanding of the PyTorch framework. The code examples shown
in this chapter are meant to be educational and describe some of the ideas
that this book explored in earlier chapters, and are not necessarily to be used
as-is. For MARL, many codebases exist that efficiently implement many of
the algorithms discussed in the deep MARL chapters, including EPyMARL,2

Mava,3 JaxMARL,4 MARLLib,5 and more.

10.1 The Agent-Environment Interface

Interacting with an environment is critical to the implementation of MARL
algorithms. In a MARL setting, multiple agents interact with an environment
simultaneously, and each agent’s actions affect the environment state and other
agents’ actions. However, unlike the single-agent RL case, MARL does not
have a unified interface for environments. Different frameworks use different

1. Code accompanying this book can be found in https://github.com/marl-book/codebase.
2. https://github.com/uoe-agents/epymarl
3. https://github.com/instadeepai/Mava
4. https://github.com/FLAIROx/JaxMARL
5. https://github.com/Replicable-MARL/MARLlib

https://github.com/marl-book/codebase
https://github.com/uoe-agents/epymarl
https://github.com/instadeepai/Mava
https://github.com/FLAIROx/JaxMARL
https://github.com/Replicable-MARL/MARLlib

“marl-book-main” — 2025/6/18 — 20:07 — page 306 — #335

306 Chapter 10

environment interfaces, making it challenging to implement an algorithm that
seamlessly works on all environments.

Nevertheless, the general idea of an agent-environment interface remains
the same in MARL as in single-agent RL. The environment provides a set
of functions that agents can use to interact with the environment. Typically,
the environment has two main functions: reset() and step(). The reset()

function initializes the environment and returns the initial observation, while the
step() function advances the environment by one time step, taking an agent’s
action as input and returning the next observation, reward, and binary variable
that is true if the episode has terminated (termination flag). In addition to these
functions, the environment should be able to describe the observation space and
the action space. The observation space defines the possible observations that
agents can receive from the environment, while the action space defines the
possible actions that agents can take.

In single-agent RL, the most common interface is called Gym (Brockman
et al. 2016) and, with some minor modifications, can support many multi-
agent environments. An example of this interface can be found in level-based
foraging (Section 11.3.1), which can be imported in Python using the code in
Code Block 10.1. The gym.make() command takes as an argument the name of
the environment, which in this case further defines the exact task parameters
(grid size, number of agents, and number of items).

1 import lbforaging
2 import gym
3

4 env = gym.make("Foraging-8x8-2p-1f-v2")

Code Block 10.1: Creating an environment.

The observation and action spaces can be retrieved from the environment
using the code in Code Block 10.2. In the case of level-based foraging, the
observation space is a 15-dimensional vector for each agent (noted as Box

in the Gym library when it contains float values) containing information on
the placement of agents and items, along with their levels. The action space,
which is Discrete(6) for each agent, specifies that the expected actions are
discrete numbers (0, 1, …, 5) corresponding to the four movement actions, the
collecting action to collect an item, and the noop action that does nothing
(see Section 11.3.1 for further details on this environment). Notably, both the
observation and action spaces are tuples and their n elements correspond to
each agent. In Code Block 10.2, the tuples are of size two, which means that
two agents exist in the environment.

1 env.observation_space
2 >> Tuple(Box(..., 15), Box(..., 15))

“marl-book-main” — 2025/6/18 — 20:07 — page 307 — #336

Multi-Agent Deep Reinforcement Learning in Practice 307

3

4 env.action_space
5 >> Tuple(Discrete(6), Discrete(6))

Code Block 10.2: Observation and action spaces. The Box action space also
includes the upper and lower limits of these values (abbreviated as dots).

The crucial step of interacting with the environment is shown in Code Block
10.3. The reset() function initializes the environment and returns the initial
observation for each agent. This can be used to select the actions a0

i for each
agent i, which are then passed to the step function. The step() function
simulates the transition from a state to the next state given the joint action, and
returns the n observations (of the next state), a list of n rewards, whether the
episode has terminated, and an optional info dictionary (which we ignore in
the Code Block using Python’s _ notation).

1 observations = env.reset()
2 next_observations, rewards, terminal_signal, _ = env.step(

actions)

Code Block 10.3: Observing and acting in an environment.

Some multi-agent environments (which will be discussed in Chapter 11) do
not conform to this exact interface. However, the simple interface described
above can model POSGs, with other interfaces mostly used to extend it with
additional capabilities, such as limiting the actions available to agents during
the episode, or providing the full environment state. The book’s codebase uses
the above interface and requires wrappers for environments that have a different
way to provide the necessary information to the learning algorithms.

10.2 MARL Neural Networks in PyTorch

The first step in implementing a deep learning algorithm is the process of setting
up a simple neural network model. In RL, neural networks can be used to
represent various functions, such as the policy, the state value, and the action
value. The exact specifications of a model depend on the algorithm that will be
implemented, but the main structure is similar across algorithms.

The book’s codebase provides a flexible architecture for designing a fully
connected neural network per agent to be used in a MARL scenario. The code
defines a specific number of hidden layers, number of units in each hidden layer,
and type of non-linearity applied in each unit, which can be changed to best
fit the specific problem being modeled. The input to the module’s constructor
allows for different networks to be created, by changing the size of the inputs

“marl-book-main” — 2025/6/18 — 20:07 — page 308 — #337

308 Chapter 10

and outputs for each of the agents. In this implementation, the networks defined
in Code Block 10.4 below are independent of each other.

1 import torch
2 from torch import nn
3 from typing import List
4

5 class MultiAgentFCNetwork(nn.Module):
6 def __init__(
7 self,
8 in_sizes: List[int],
9 out_sizes: List[int]

10):
11 super().__init__()
12

13 # We use the ReLU activation function:
14 activ = nn.ReLU
15 # We use two hidden layers of 64 units each:
16 hidden_dims = (64, 64)
17

18 n_agents = len(in_sizes)
19 # The number of agents is the length of the
20 # input and output vector
21 assert n_agents == len(out_sizes)
22

23 # We will create ‘n_agents’ (independent) networks
24 self.networks = nn.ModuleList()
25

26 # For each agent:
27 for in_size, out_size in zip(in_sizes, out_sizes):
28 network = [
29 nn.Linear(in_size, hidden_dims[0]),
30 activ(),
31 nn.Linear(hidden_dims[0], hidden_dims[1]),
32 activ(),
33 nn.Linear(hidden_dims[1], out_size),
34]
35 self.networks.append(nn.Sequential(*network))
36

37 def forward(self, inputs: List[torch.Tensor]):
38

39 # The networks can run in parallel:
40 futures = [
41 torch.jit.fork(model, inputs[i])
42 for i, model in enumerate(self.networks)
43]
44 results = [torch.jit.wait(fut) for fut in futures]
45 return results

Code Block 10.4: An example of a neural network for MARL.

In Code Block 10.4, Lines 27 to 35 iterate over the input and output sizes
of each agent and extend the list of the separate neural networks (Line 35).
While all modules are included in the same model, the actual networks are
independent and can even be run in parallel. The loop in Line 40 begins a

“marl-book-main” — 2025/6/18 — 20:07 — page 309 — #338

Multi-Agent Deep Reinforcement Learning in Practice 309

parallel forward pass through these networks, which makes the computation
begin in the background. The program can continue while PyTorch computes
the forward pass. In Line 44, the program waits until the computation finishes
and the result is ready (similarly to the async/await pattern found in many
programming languages).

10.2.1 Seamless Parameter Sharing Implementation

Section 9.7.1 discussed parameter sharing, a prevalent paradigm when im-
plementing MARL algorithms and especially useful in environments with
homogeneous agents. Parameter sharing requires agents to have a single net-
work and all inputs and outputs can derive from that. Parameter sharing can be
seamlessly interchanged in the model by defining a parameter-sharing variant
as shown in Code Block 10.5.

1 class MultiAgentFCNetwork_SharedParameters(nn.Module):
2

3 def __init__(
4 self,
5 in_sizes: List[int],
6 out_sizes: List[int]
7):
8

9 # ... same as MultiAgentFCNetwork
10

11 # We will create one (shared) network
12 # This assumes that input and output size of the
13 # networks is identical across agents. If not, one
14 # could first pad the inputs and outputs
15

16 network = [
17 # ... same as MultiAgentFCNetwork
18]
19 self.network = nn.Sequential(*network)
20

21 def forward(self, inputs: List[torch.Tensor]):
22

23 # A forward pass of the same network in parallel
24 futures = [
25 torch.jit.fork(self.network, inp)
26 for inp in inputs)
27]
28 results = [torch.jit.wait(fut) for fut in futures]
29 return results

Code Block 10.5: An example of a shared neural network.

The difference between the networks created in Code Block 10.4 and 10.5 is
that in the latter there is no loop that creates many sub-networks (Code Block
10.4, Line 27), and instead, the definition of a single sequential module (Code
Block 10.5, Line 19). The parallel execution of the forward operation in Code

“marl-book-main” — 2025/6/18 — 20:07 — page 310 — #339

310 Chapter 10

64 fully
connected

units

64 fully
connected

units

output layer
(Q values)

input layer
(observation)

Figure 10.1: The resulting MultiAgentFCNetwork of Code Block 10.6 for the
IDQN algorithm with two agents, an observation of size 5, and three possible
actions for each agent.

Block 10.5’s Line 24 calls the same network each time instead of iterating over
a list.

10.2.2 Defining the Models: An Example with IDQN

The models that were discussed in Section 10.2 can be easily initialized for use
in a MARL setting. For instance, to use either of them in IDQN (Algorithm 17),
we only have to understand and define the sizes of our action and observation
spaces. DQN uses a single value network that is structured in a way that receives
as input the individual observation oi and outputs a vector of Q-values for each
of the possible actions. Code Block 10.6 shows an example of how to create a
model to be used with IDQN, with two agents, an observation size of five, and
three possible actions per agent.

1 # Example of observation of agent 1:
2 # obs1 = torch.tensor([1, 0, 2, 3, 0])
3

4 # Example of observation of agent 2:
5 # obs2 = torch.tensor([0, 0, 0, 3, 0])
6

7 obs_sizes = (5, 5)

“marl-book-main” — 2025/6/18 — 20:07 — page 311 — #340

Multi-Agent Deep Reinforcement Learning in Practice 311

8

9 # Example of action of agent 1:
10 # act1 = [0, 0, 1] # one-hot encoded
11

12 # Example of action of agent 2:
13 # act2 = [1, 0, 0] # one-hot encoded
14

15 action_sizes = (3, 3)
16

17 model = MultiAgentFCNetwork(obs_sizes, action_sizes)
18

19 # Alternatively, the shared parameter model can be used instead:
20 # model = MultiAgentFCNetwork_SharedParameters(
21 # obs_sizes, action_sizes
22 #)

Code Block 10.6: Example of initializing the models.

The resulting networks produced by the Code Block 10.6 can be seen in
Figure 10.1. The IDQN algorithm can be built on top of these networks. To
predict (and later learn) action value for each agent for the IDQN algorithm,
one can use Code Block 10.7.

1 # obs1, obs2, model as above
2

3 q_values = model([obs1, obs2])
4 >> ([Q11, Q12, Q13], [Q21, Q22, Q23])
5 # where Qij is the Q value of agent i doing action j

Code Block 10.7: Sampling Q-values.

In PyTorch, executing operations (such as summation, or other functions) in
an additional “agent” dimension is a very powerful tool. Say, for example, that
the algorithm needs to calculate the actions with the highest Q-values per agent
(e.g., for use in the Bellman equation). This can be done in parallel in a similar
way as in the single agent case, as shown in Code Block 10.8.

1 # we are creating a new "agent" dimension
2 q_values_stacked = torch.stack(q_values)
3 print(q_values_stacked.shape)
4 >> [2, 3]
5 # 2: agent dimension, 3: action dimension
6

7 # calculating best actions per agent (index):
8 _, a_prime = q_values_stacked.max(-1)

Code Block 10.8: Stacking Q-values.

Implementing the full IDQN algorithm presented in Algorithm 17 requires
a framework to interact with the environment, an implementation of a replay
buffer, and a target network. However, with the basics covered in this section,
implementing IDQN should be a relatively simple exercise.

“marl-book-main” — 2025/6/18 — 20:07 — page 312 — #341

312 Chapter 10

10.3 Centralized Value Functions

This section will cover another basic idea in MARL, which is to build algo-
rithms that condition value functions or policies on “external” information
(Section 9.4.2).

The IDQN algorithm uses the observations as input to the action-value net-
work. A simple alternative is conditioning the action value on the concatenation
of the observations of all agents, which may give a better approximation of the
state in partially observable environments. The state-conditioned actor-critic
algorithm, first presented in Section 9.4.2, uses such a critic. An example
in PyTorch for concatenating the observations and creating the critic for this
algorithm is shown in Code Block 10.9.

1 centr_obs = torch.cat([obs1, obs2])
2 print(centr_obs)
3 >> tensor([1, 0, 2, 3, 0, 0, 0, 0, 3, 0])
4

5 # we use an input size of 5+5=10, once for each agent
6 critic = MultiAgentFCNetwork([10, 10], [1, 1])
7

8 values = critic(2*[centr_obs]) # outputs the state value for
each agent

Code Block 10.9: Concatenated observations.

Line 1 uses PyTorch’s concatenation function to merge the observations of
two agents. The input size of the critic is increased accordingly to 10 (Line
6), while the dimensionality of the output is 1 given that it returns the value
of the joint observation under the policy (but not action). This model is now
conditioned on the concatenation of the observations, and produces better
estimates in partially observable environments.

To adhere to the CTDE paradigm, the policy network (actor) is just condi-
tioned on the observation of the agent. An example of how to initialize and how
to sample actions from that network can be seen in Code Block 10.10.

1 actor = MultiAgentFCNetwork([5, 5], [3, 3])
2

3 from torch.distributions import Categorical
4 actions = [Categorical(logits=y).sample() for y in actor([obs1,

obs2])]

Code Block 10.10: Sampling actions from a policy network.

Line 4 creates a categorical distribution for each agent, from the outputs of
the network. The categorical distribution can be sampled to produce the actions
that the agents will perform.

“marl-book-main” — 2025/6/18 — 20:07 — page 313 — #342

Multi-Agent Deep Reinforcement Learning in Practice 313

10.4 Value Decomposition

In common-reward environments, an algorithm could employ a value decom-
position method such as VDN or QMIX (Sections 9.5.2 and 9.5.3). In Code
Block 10.11 we show how value decomposition with VDN can be implemented
in practice.

1 # The critic and target are both MultiAgentFCNetwork
2 # The target is "following" the critic using soft or hard
3 # updates. Hard updates copy all the parameters of the network
4 # to the target while soft updates gradually interpolate them
5

6 # obs and nobs are List[torch.tensor] containing the
7 # observation and observation at t+1 respectively
8 # For each agent
9

10 with torch.no_grad():
11 q_tp1_values = torch.stack(critic(nobs))
12 q_next_states = torch.stack(target(nobs))
13 all_q_states = torch.stack(self.critic(obs))
14

15 _, a_prime = q_tp1_values.max(-1)
16

17

18 target_next_states = q_next_states.gather(
19 2, a_prime.unsqueeze(-1)
20).sum(0)
21

22 # Notice .sum(0) in the line above.
23 # This command sums the Q values of the next states
24

25 target_states = rewards + gamma*target_next_states*(1-
terminal_signal)

Code Block 10.11: Value decomposition with VDN.

Remember that in the example above, our rewards are one-dimensional,
meaning one (common) reward for the joint action. We, therefore, sum the
outputs of the action-value networks and attempt to approximate the returns
using that sum. More complicated solutions (e.g., QMIX) can be used in place
of a simple summation operation to enforce assumptions (e.g., non-linearity, or
the monotonicity constraint).

10.5 Practical Tips for MARL Algorithms

Similarly to other areas of machine learning, the implementation of MARL
algorithms also demands significant engineering efforts. This section provides
a number of useful tips for implementing such algorithms. It should be noted
that not all of these tips will be applicable to every MARL problem, given

“marl-book-main” — 2025/6/18 — 20:07 — page 314 — #343

314 Chapter 10

the wide-ranging and diverse assumptions that exist in this field. Nonetheless,
gaining a grasp of these concepts can prove to be useful.

10.5.1 Stacking Time Steps vs. Recurrent Network vs. Neither

In Part I of the book, we focused on the theoretically sound approach of condi-
tioning policies on the history of observations (i.e., ht

i), especially in POSGs.
But, as discussed in Section 8.3, neural networks have a predefined structure
that does not allow a variable input length. Even if this was circumvented (e.g.,
by padding the inputs), in large and complicated environments, large inputs
with repeated information could even have a detrimental effect on learning.
A MARL practitioner implementing an algorithm with neural networks can
choose between three options: (i) stack a small number of observations (e.g.,
ot−5:t

i), (ii) use a recurrent neural network (e.g., LSTM or GRU), or (iii) simply
ignore the previous observations and assume that ot

i carries all necessary infor-
mation for deciding on an action. Using recurrent structures is the closest to
the theoretically sound solution, but in practice, recurrent architectures suffer
from the vanishing gradient problem that can lead to information far in the past
being unused.

When should we use each approach? We cannot have a definite answer to
this question before we have experimental results on a specific environment.
We could, however, consider the following: How important is the information
contained in previous observations to the agents’ decisions? If almost all
information is contained in the last observation (e.g., a nearly fully observable
environment), then it is possible that using previous observations will not lead
to improved performance. If all information is contained in a set amount of time
steps, then a starting point would be to concatenate the last time steps before
providing them to the network. Finally, if the information contained far in the
past is required (e.g., navigating a long maze), then a recurrent network might
prove useful.

10.5.2 Standardizing Rewards

Research in single-agent RL has demonstrated empirical improvements when
standardizing the rewards and returns. These improvements are also observed
in MARL. Many MARL environments have rewards that span many orders of
magnitude (e.g., multi-agent particle environments discussed in Section 11.3.2),
hindering the ability of neural networks to approximate them. So, an algorithm
could be more efficient by using rewards that are standardized: the mean of
rewards should be zero, with a standard deviation of one. In practice, there are
many different ways to implement such a mechanism. For example, one could

“marl-book-main” — 2025/6/18 — 20:07 — page 315 — #344

Multi-Agent Deep Reinforcement Learning in Practice 315

standardize over the batch, or over a running average and standard deviation
of the rewards. Or one could standardize the returns instead of the rewards, as
shown in Code Block 10.12, attempting to keep the output of the state-value or
action-value network close to zero.

1 # Standardizing the returns requires a running mean and variance
2 returns = (returns - MEAN) / torch.sqrt(VARIANCE)

Code Block 10.12: Example of return standardization.

Notably, reward standardization is an empirical tip but can distort the un-
derlying assumptions and goals of an algorithm. For example, consider an
environment with only negative rewards: a one-state MDP with two actions.
The first action rewards the agent with −1 and ends the episode, while the
second action rewards the agent with −0.1 but only ends the episode with
a 1 percent chance. Standardization would lead to the second action being
considered to provide positive rewards instead. While the overall preference
between actions would remain the same (the first action leads to lower rewards
than the second action), the nature of the problem has changed. With negative
rewards, the agent aims for the episode to end as early as possible, but now,
with potentially positive rewards, the agent could instead prefer staying in the
environment for longer. This difference in an agent’s goals is subtle, but should
be well understood before standardization of rewards is applied in practice.

10.5.3 Centralized Optimization

Stochastic gradient descent remains one of the slowest parts of training an
RL agent. Many independent learning implementations use a separate op-
timizer instance for each agent. Multiple co-existing optimizers can ensure
the independence between agents by having a separate list of trainable and
internal parameters. However, such an implementation can be extremely time-
consuming and does not use parallelization. Instead, using a single optimizer
encompasses all the trainable parameters, even if the agents consist of different
neural networks or algorithms, and can be significantly faster. The final losses
can just be added before the stochastic gradient descent steps. An example in
PyTorch can be seen in Code Block 10.13.

1 params_list = list(nn_agent1.parameters())
2 + list(nn_agent2.parameters())
3 + list(nn_agent3.parameters())
4 + ...
5 common_optimizer = torch.optim.Adam(params_list)
6 ...
7 loss = loss1 + loss2 + loss3 + ...
8 loss.backward()

“marl-book-main” — 2025/6/18 — 20:07 — page 316 — #345

316 Chapter 10

9 common_optimizer.step()

Code Block 10.13: Example of single optimizer.

Lines 1 to 4 create a list of parameters to be used by the optimizer. (The
MultiAgentFCNetwork introduced in Code Block 10.6 already does this auto-
matically). Summing the losses of each agent (Line 7) creates a single loss to
be used for the gradient descent step (Lines 8 and 9).

10.6 Presentation of Experimental Results

Comparing algorithms and presenting their differences is arguably more difficult
in MARL than typical supervised learning or even single-agent RL. There are
two main reasons these comparisons are not straightforward: (i) sensitivity to
hyperparameters or training seeds and (ii) solution concepts that go beyond
one-dimensional representations (such as the accuracy in supervised learning).
This section discusses how to perform fair comparisons between algorithms in
MARL.

10.6.1 Learning Curves

Single-agent RL can often present learning performance in a “learning curve”
(see Section 2.7, page 36), a two-dimensional plot where the x-axis represents
the training time, or environment time steps, and the y-axis shows an estimation
of the agent’s episodic returns. An example of such a learning curve can be
seen in Figure 10.2(a), where the performance of a single agent learning in
an environment is displayed. There are two steps to creating the information
needed to reproduce such a figure:

• An evaluation procedure for the parameters of a policy ϕ, or action value θ,
that outputs an estimation of the mean returns of an agent in an environment.
This procedure should run at regular intervals during training.

• The outputs of the evaluations across different seeds. Then, the average and
the standard error (or deviation) of the mean returns approximated in the
previous step are needed for the final plots.

Learning curves are easy to read and to parse, and therefore they are often
used in MARL too. In common-reward games, the common reward can be
used during evaluation and should be sufficient to provide informative learning
curves similar to single-agent RL. However, this might not be the case in other
types of games, such as zero-sum games. For example, Figure 10.2(b) shows
the learning curves of two agents in a zero-sum game. It is immediately clear

“marl-book-main” — 2025/6/18 — 20:07 — page 317 — #346

Multi-Agent Deep Reinforcement Learning in Practice 317

0.0 0.2 0.4 0.6 0.8 1.0
Environment time steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

Single-Agent Learning Curve

(a) Example of a single-agent learning
curve.

0.0 0.2 0.4 0.6 0.8 1.0
Environment time steps 1e6

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

Learning Curve (Agent 1)
Learning Curve (Agent 2)

(b) Example of a learning curve in a zero-
sum game with two agents.

Figure 10.2: Examples of learning curves in single-agent and multi-agent
reinforcement learning with independent A2C. The learning curve in a zero-
sum multi-agent game is not informative and cannot demonstrate whether agents
learn during training.

that the learning curves in this example are not informative and cannot inform
of the learned abilities of the agents. In this particular example, each agent
would be able to beat an untrained agent (thus showed signs of improvement),
but as the two agents were trained together, no agent has been able to prevail
over the other.

There are still options available to make learning curves informative even in
zero-sum games. For example, a pretrained or heuristic agent could be used as a
static opponent and every evaluation procedure should match the learning agents
with that stationary opponent. This way, the MARL practitioner can assess the
abilities of the agents as they learn. The disadvantage of this method is apparent
when the game is hard enough to make heuristic agents difficult to program,
or when there is a gap between the abilities of the heuristic and learned agents
(e.g., a heuristic chess agent with high Elo rating will not offer informative
signals before the learned agent also approaches that rating). Another way to
monitor the performance in zero-sum games is by saving previous instances
of the trainable parameters, creating a pool of opponent agents, and ensuring
that newer agents can typically win against them (as is done in AlphaStar, see
Section 9.9.3). However, this does not necessarily make comparisons easy,
unless the pool of agents is common between different algorithms.

Finally, the information in the learning curves could potentially be condensed
into a single number, either by presenting the maximum value of the curve or
its average. These values offer different functions, the maximum can be used
to signify whether an algorithm at any point solved the environment, and the
average signifies how fast the algorithm learned in the environment as well as its

“marl-book-main” — 2025/6/18 — 20:07 — page 318 — #347

318 Chapter 10

stability. The maximum can be considered more important since it can inform
us whether a desired behavior has been achieved. However, multiple algorithms
might reach the same maximum performance. In this case, the average can help
to further distinguish algorithms based on their learning speed and stability.

10.6.2 Hyperparameter Search

The fact that multiple agents are learning concurrently, and that they each affect
the learning of other agents, makes MARL especially sensitive to hyperparame-
ters. In turn, this sensitivity to hyperparameters makes comparisons between
algorithms complicated. Remember: a comparison between algorithms when
one algorithm has had a larger hyperparameter search is unfair.

Therefore, in most cases, a thorough hyperparameter search is necessary
for finding hyperparameters that work in a specific problem. The quantity of
hyperparameters to be tested depends on the complexity of the problem and the
computational resources available. A simple, highly parallelisable solution is to
run a grid search across many combinations of hyperparameters and multiple
seeds. Then, the best hyperparameter combination can be found by comparing
the runs using the metrics (e.g., maximum) described in Section 10.6.1.

A parallel hyperparameter search can be executed by independently calling
the training programs with different input parameters (the hyperparameters).
For example, the Bash script shown in Code Block 10.14 iterates over various
learning rates by providing them as inputs to a Python script. The ampersand
symbol (&) at the end of Line 4 indicates the end of the command, but causes
Bash to execute it asynchronously.

1 for s in {1..5}
2 for i in $(seq 0.01 0.01 0.1}
3 do
4 python algorithm.py --lr=$i --seed=$s &
5 done
6 done

Code Block 10.14: An example of a hyperparameter search.

Of course, more complicated hyperparameter searches would require more
complicated scripts to launch and collect the experiments. However, the pro-
cedure should be similar in nature. The size of the hyperparameter search is
limited to the available computational power, but a larger search leads to more
confidence in the ability of an algorithm to learn in an environment. A rule of
thumb is to start the hyperparameter search near values that are known to be
sensible and mainly focus on the hyperparameters that control the exploration,
such as the entropy coefficient.

“marl-book-main” — 2025/6/18 — 20:07 — page 319 — #348

11 Multi-Agent Environments

Chapter 3 introduced a hierarchy of game models to formalize interaction
processes in multi-agent systems, including normal-form games, stochastic
games, and POSGs. Based on these game models, a number of multi-agent
environments have been implemented in the MARL research community that
serve as benchmarks and “playgrounds” for MARL algorithms, and allow us to
evaluate and study such algorithms. This chapter presents a selection of existing
multi-agent environments.

The purpose of this chapter is two-fold: Firstly, the environments presented
here serve as concrete examples of the game models used in this book. They
illustrate a range of situations and learning challenges for MARL algorithms.
Secondly, for the reader interested in experimenting with MARL algorithms,
the environments presented in this chapter are a first starting point. The code im-
plementations for these environments are freely available from their respective
sources. Note that our selection of environments is by no means comprehensive;
there are many more environments used in MARL research.

We begin in Section 11.1 by discussing a set of criteria to consider when
selecting multi-agent environments, in particular regarding the mechanics of
the environment (e.g., state/action dynamics and observability) and the dif-
ferent types of learning challenges involved. Section 11.2 will then present
a taxonomy of 2× 2 matrix games (i.e., normal-form games with two agents
and two actions each), which are further classified into no-conflict games and
conflict games. This taxonomy is complete in the sense that it contains all
games that are structurally distinct from each other, including ordinal versions
of many games discussed in previous chapters of this book, such as Prisoner’s
Dilemma, Chicken, and Stag Hunt. Moving on to the more complex game
models of stochastic games and POSGs, Section 11.3 will present a selection of
multi-agent environments in which agents are faced with multiple challenges,
such as complex state/action spaces, partial observability, and sparse rewards.

“marl-book-main” — 2025/6/18 — 20:07 — page 320 — #349

320 Chapter 11

11.1 Criteria for Choosing Environments

There are a number of considerations when choosing environments to test
MARL algorithms. Which properties and learning abilities do we want to test in
a MARL algorithm? Relevant properties may include the algorithm’s ability to
robustly converge to specific solution concepts; how efficiently it scales in the
number of agents; and the algorithm’s ability to learn successfully when there
are large state and/or action spaces, partial observability, and sparse rewards
(meaning rewards are zero most of the time).

Normal-form games can serve as simple benchmarks and are particularly
useful when evaluating fundamental properties of MARL algorithms, such as
convergence to specific types of solution concepts. For non-repeated normal-
form games, methods exist to compute exact solutions for the different solution
concepts, such as the linear programs for minimax and correlated equilibria
shown in Sections 4.3.1 and 4.6.1. The joint policies learned by MARL algo-
rithms in a normal-form game can then be compared to the exact solutions to
give an indication of learning success. Normal-form games (if they are relatively
small) are also useful for manual inspection of learning processes, and can be
used as illustrative examples as we have done in many places in this book.

Environments based on stochastic games and POSGs can be used to test an
algorithm’s ability to deal with state/action spaces of varying complexity, partial
observability, and sparse rewards. Many such environments can be configured
to create tasks of increasing complexity, such as by varying the number of
agents and world size; and by varying the degree of partial observability (e.g.,
setting the observation radius). The most difficult learning tasks usually feature
a combination of large state/action spaces, limited observability for agents, and
sparse rewards. A downside of using such environments is that it is usually not
tractable to compute exact solutions, such as Nash equilibria; though we can
test whether a learned joint policy is an equilibrium, as outlined in Section 4.4.

In addition to the properties mentioned previously, it is important to consider
what kinds of skills the agents have to learn in order to be successful in an
environment. Different environments may require different kinds of skills in
agents, such as deciding when and with what other agents to cooperate (as
in LBF, Section 11.3.1), what information to share (as in some MPE tasks,
Section 11.3.2), how to position oneself in a team and distribute responsibilities
(such as in SMAC and GRF, Sections 11.3.3 and 11.3.5), and many other skills.
A MARL algorithm may succeed at learning some types of skills but not others,
and it is important to evaluate such learning abilities.

“marl-book-main” — 2025/6/18 — 20:07 — page 321 — #350

Multi-Agent Environments 321

11.2 Structurally Distinct 2 × 2 Matrix Games

This section contains a listing of all seventy-eight structurally distinct, strictly
ordinal 2× 2 matrix games (i.e., normal-form games with two agents and
two actions each), based on the taxonomy of Rapoport and Guyer (1966).1

The games are structurally distinct in that no game can be reproduced by any
sequence of transformations of any other game, which includes interchanging
the rows, columns, agents, and any combinations thereof in the game’s reward
matrix. The games are strictly ordinal, meaning that each agent ranks the four
possible outcomes from 1 (least preferred) to 4 (most preferred), and no two
outcomes can have the same rank. The games are further categorized into
no-conflict games and conflict games. In a no-conflict game, the agents have the
same set of most preferred outcomes. In a conflict game, the agents disagree on
the most preferred outcomes.

The games are presented in the following format:

X (Y)

a1,1, b1,1 a1,2, b1,2

a2,1, b2,1 a2,2, b2,2

X is the number of the game in our listing, and Y is the corresponding number
of the game in the original taxonomy (Rapoport and Guyer 1966). The variables
ak,l and bk,l, where k, l∈ {1, 2}, contain the rewards for agent 1 (row) and
agent 2 (column), respectively, if agent 1 chooses action k and agent 2 chooses
action l. A reward pair is underlined if the corresponding joint action constitutes
a deterministic (pure) Nash equilibrium, as defined in Section 4.4. (Some games
do not have deterministic Nash equilibria.)

11.2.1 No-Conflict Games

1 (1)

4, 4 3, 3
2, 2 1, 1

2 (2)

4, 4 3, 3
1, 2 2, 1

3 (3)

4, 4 3, 2
2, 3 1, 1

4 (4)

4, 4 3, 2
1, 3 2, 1

5 (5)

4, 4 3, 1
1, 3 2, 2

6 (6)

4, 4 2, 3
3, 2 1, 1

7 (22)

4, 4 3, 3
2, 1 1, 2

8 (23)2

4, 4 3, 3
1, 1 2, 2

9 (24)

4, 4 3, 2
2, 1 1, 3

10 (25)

4, 4 3, 2
1, 1 2, 3

1. The matrix games can be downloaded for use with this book’s codebase at: https://github.com
/uoe-agents/matrix-games
2. Game no. 23 in the original listing provided by Rapoport and Guyer (1966) has a typo: the
reward a2,1 should be 1.

https://github.com/uoe-agents/matrix-games
https://github.com/uoe-agents/matrix-games

“marl-book-main” — 2025/6/18 — 20:07 — page 322 — #351

322 Chapter 11

11 (26)

4, 4 2, 3
3, 1 1, 2

12 (27)

4, 4 2, 2
3, 1 1, 3

13 (28)

4, 4 3, 1
2, 2 1, 3

14 (29)

4, 4 3, 1
1, 2 2, 3

15 (30)

4, 4 2, 1
3, 2 1, 3

16 (58)

4, 4 2, 3
1, 1 3, 2

17 (59)

4, 4 2, 2
1, 1 3, 3

18 (60)

4, 4 2, 1
1, 2 3, 3

19 (61)

4, 4 1, 3
3, 1 2, 2

20 (62)

4, 4 1, 2
3, 1 2, 3

21 (63)

4, 4 1, 2
2, 1 3, 3

11.2.2 Conflict Games

22 (7)

3, 3 4, 2
2, 4 1, 1

23 (8)

3, 3 4, 2
1, 4 2, 1

24 (9)

3, 3 4, 1
1, 4 2, 2

25 (10)

2, 3 4, 2
1, 4 3, 1

26 (11)

2, 3 4, 1
1, 4 3, 2

27 (12)

2, 2 4, 1
1, 4 3, 3

28 (13)

3, 4 4, 2
2, 3 1, 1

29 (14)

3, 4 4, 2
1, 3 2, 1

30 (15)

3, 4 4, 1
2, 3 1, 2

31 (16)

3, 4 4, 1
1, 3 2, 2

32 (17)

2, 4 4, 2
1, 3 3, 1

33 (18)

2, 4 4, 1
1, 3 3, 2

34 (19)

3, 4 4, 3
1, 2 2, 1

35 (20)

3, 4 4, 3
2, 2 1, 1

36 (21)

2, 4 4, 3
1, 2 3, 1

37 (31)

3, 4 2, 2
1, 3 4, 1

38 (32)

3, 4 2, 1
1, 3 4, 2

39 (33)

3, 4 1, 2
2, 3 4, 1

40 (34)

3, 4 1, 1
2, 3 4, 2

41 (35)

2, 4 3, 2
1, 3 4, 1

42 (36)

2, 4 3, 1
1, 3 4, 2

43 (37)

3, 4 2, 3
1, 2 4, 1

44 (38)

3, 4 1, 3
2, 2 4, 1

45 (39)

2, 4 3, 3
1, 2 4, 1

46 (40)

3, 4 4, 1
2, 2 1, 3

47 (41)

3, 4 4, 1
1, 2 2, 3

48 (42)

3, 3 4, 1
2, 2 1, 4

49 (43)

3, 3 4, 1
1, 2 2, 4

50 (44)

2, 4 4, 1
1, 2 3, 3

51 (45)

3, 2 4, 1
2, 3 1, 4

“marl-book-main” — 2025/6/18 — 20:07 — page 323 — #352

Multi-Agent Environments 323

52 (46)

3, 2 4, 1
1, 3 2, 4

53 (47)

2, 3 4, 1
1, 2 3, 4

54 (48)

2, 2 4, 1
1, 3 3, 4

55 (49)

3, 4 4, 3
2, 1 1, 2

56 (50)

3, 4 4, 3
1, 1 2, 2

57 (51)

3, 4 4, 2
2, 1 1, 3

58 (52)

3, 4 4, 2
1, 1 2, 3

59 (53)

3, 3 4, 2
2, 1 1, 4

60 (54)

3, 3 4, 2
1, 1 2, 4

61 (55)

2, 4 4, 3
1, 1 3, 2

62 (56)

2, 4 4, 2
1, 1 3, 3

63 (57)

2, 3 4, 2
1, 1 3, 4

64 (64)

3, 4 2, 1
1, 2 4, 3

65 (65)

2, 4 3, 1
1, 2 4, 3

66 (66)

3, 3 2, 4
4, 2 1, 1

67 (67)

2, 3 3, 4
4, 2 1, 1

68 (68)

2, 2 3, 4
4, 3 1, 1

69 (69)

2, 2 4, 3
3, 4 1, 1

70 (70)

3, 4 2, 1
4, 2 1, 3

71 (71)

3, 3 2, 1
4, 2 1, 4

72 (72)

3, 2 2, 1
4, 3 1, 4

73 (73)

2, 4 4, 1
3, 2 1, 3

74 (74)

2, 4 3, 1
4, 2 1, 3

75 (75)

2, 3 4, 1
3, 2 1, 4

76 (76)

2, 3 3, 1
4, 2 1, 4

77 (77)

2, 2 4, 1
3, 3 1, 4

78 (78)

2, 2 3, 1
4, 3 1, 4

11.3 Complex Environments

With the emergence of increasingly complex MARL algorithms, a plethora of
multi-agent environments have been developed to evaluate and study algorithms.
In this section, we present a selection of such multi-agent environments which
have seen significant adoption by the MARL research community (many more
environments exist that are not covered in this chapter). Our selection includes
individual environments as well as environment collections. For each environ-
ment, we describe the core properties in terms of state/action representation and
observability, and the main learning challenges involved.

“marl-book-main” — 2025/6/18 — 20:07 — page 324 — #353

324 Chapter 11

Environment (Section) Observability Observations Actions Rewards

Environments:
LBF (11.3.1) full, part dis dis spa
MPE (11.3.2) full, part con dis, con den
SMAC (11.3.3) part mix dis den
RWARE (11.3.4) part dis dis spa
GRF (11.3.5) full, part mix dis den, spa
Hanabi (11.3.6) part dis dis spa
Overcooked (11.3.7) full mix dis spa

Environment collections:
Melting Pot (11.4.1) part con dis den, spa
OpenSpiel (11.4.2) full, part dis dis den, spa
Petting Zoo (11.4.3) full, part mix dis, con den, spa

Figure 11.1: List of multi-agent environments and environment collections,
with core properties. Observability indicates full (full) or partial (part) observ-
ability. Observations indicate discrete (dis), continuous (con), or mixed (mix)
observations and states. Actions indicates discrete (dis) or continuous (con)
actions. Rewards indicates dense (den) or sparse (spa) rewards. Multiple values
in a column indicate that the environment provides options for each value.

Figure 11.1 provides a summary of the environments along with their core
properties. Download URLs can be found in the references for each environ-
ment, given in the respective following subsections. Many environments use
parameters to control the complexity or difficulty of the learning problem (such
as by setting the number of agents, word size, number of items, and others). We
use the term “task” to refer to a specific parameter setting of an environment.

11.3.1 Level-Based Foraging

Throughout this book, we have used a number of examples based on the level-
based foraging (LBF) environment. LBF was first introduced in the work of
Albrecht and Ramamoorthy (2013), and has been adopted as a benchmark
for multi-agent deep RL (e.g., Christianos, Schäfer, and Albrecht 2020; Pa-
poudakis et al. 2021; Yang et al. 2022; Jafferjee et al. 2023). In LBF, n
agents are placed in a fully observable grid-world environment and tasked with
collecting items that are randomly located in the environment. Each agent
and item has a numerical skill level. All agents have the same action space,
A = {up, down, left, right, collect, noop}, to navigate in the environment, collect
items, or do nothing (noop). A group of one or more agents can collect an item

“marl-book-main” — 2025/6/18 — 20:07 — page 325 — #354

Multi-Agent Environments 325

(a) Random levels (b) Forced cooperation

Figure 11.2: Illustrations of two LBF tasks in an 8× 8 grid-world with three
agents, five items, and either (a) random levels or (b) forced cooperation. Tasks
with forced cooperation assign item level, such that each item requires all agents
to cooperate to collect the item.

if: they are positioned adjacent to the item, they all select the collect action,
and the sum of the agents’ levels is equal or greater than the item’s level. Thus,
some items require cooperation between (subsets of) agents. Agents receive
a normalized reward for the collection of an item, which depends on the level
of the item as well as the agents’ contribution to the collection of the item.
Specifically, agent i receives the following reward when collecting item f

ri =
lf · li∑

f ′∈F lf ′
∑

j∈I(f) lj
(11.1)

where lf is the level of item f , li is the level of agent i, F is the set of all
items, and I(f) is the set of agents involved in collecting the item f . Hence, the
rewards of agent i are normalized with respect to the level of all items that can
be collected in the environment as well as the relative level of agent i compared
to the level of all agents contributing to the collection of item f .

An LBF task is specified by the size of the grid-world, the number of agents
and items, and their skill levels. Agents and items can be randomly assigned a
level at the beginning of each episode and placed in a random location within
the grid-world. See Figure 11.2 for an illustration of two LBF tasks.

The environment is flexible with tasks requiring varying degrees of coopera-
tion, observability, and scale. Challenging exploration problems can be defined
in LBF by “enforcing cooperation.” In tasks with forced cooperation, item levels
are assigned such that all agents in the environment need to cooperate to collect
any of the items in the grid-world. See Figure 11.2(b) for an example environ-
ment with forced cooperation. It is also worth noting that many LBF tasks have

“marl-book-main” — 2025/6/18 — 20:07 — page 326 — #355

326 Chapter 11

Predators

Prey

(a) Predator-prey

Landmarks

Agents

(b) Coord. navigation

Landmarks

Listener

Speaker

(c) Speaker-listener

Figure 11.3: Three MPE tasks. (a) Predator-prey: a set of predator agents
must catch a faster prey agent and avoid obstacles (large black circles). (b)
Coordinated navigation: three agents need to scatter to cover three landmarks in
the environment while avoiding collisions with each other. (c) Speaker-listener:
a “listener” agent is randomly assigned one of three landmarks and needs to
navigate to its assigned landmark (highlighted with the same color). The listener
does not observe its own color and relies on a “speaker” agent that can see the
listener’s color and needs to learn to communicate the color through binary
communication actions.

mixed objectives across agents, with agents competing to receive individual
reward for items they can collect by themselves and needing to cooperate with
other agents to collect items of higher levels. Such conflicting objectives make
for interesting multi-agent environments.

11.3.2 Multi-Agent Particle Environment

The multi-agent particle environment (MPE) contains several two-dimensional
navigations tasks focusing on agent coordination. The environment includes
competitive, cooperative, and common-reward tasks with full and partial observ-
ability. Agents observe high-level features, such as their velocity and relative
positions to landmarks and other agents in the environment. Agents can either
choose between discrete actions corresponding to movement in each cardinal
direction, or use continuous actions for the velocity to move in any direction.
Tasks include the common predator-prey problem in which a team of agents,
the predators, must chase and reach an escaping prey; tasks in which agents
need to communicate parts of their local observation to other agents; and more
coordination problems.

Mordatch and Abbeel (2018) introduced the environment, and Lowe et
al. (2017) proposed an initial set of tasks commonly used for MPE. As the

“marl-book-main” — 2025/6/18 — 20:07 — page 327 — #356

Multi-Agent Environments 327

environment is extendable, more variations and tasks have been proposed (e.g.,
Iqbal and Sha (2019)). Three common MPE tasks are shown in Figure 11.3.

To further extend MPE, Bettini et al. (2022) propose the vectorized multi-
agent simulator (VMAS). It also supports 2D multi-agent tasks with continuous
or discrete action spaces. In contrast to the original MPE environment, VMAS
can directly be simulated on GPUs to speed up training, offers more tasks, and
supports multiple interfaces for compatibility across multiple RL frameworks.

11.3.3 StarCraft Multi-Agent Challenge

The StarCraft Multi-Agent Challenge (SMAC) environment (Samvelyan et
al. 2019) contains common-reward tasks based on the real-time strategy game
StarCraft II. In SMAC tasks, a team of agents controls units (one per agent)
that combat against a team of units controlled by a fixed built-in AI. Tasks vary
in the number and types of units, and maps in which the combat scenarios take
place. Depending on the terrain, area and units, micromanagement strategies
such as “kiting” are required to coordinate the team and successfully defeat the
opponent team. SMAC contains symmetric tasks in which both teams consist
of the same units (Figure 11.4(a)), and asymmetric tasks in which the teams
have different compositions (Figure 11.4(b)). All SMAC tasks are partially
observable, with agents only observing information such as health and shield
status of themselves and nearby units up to a certain radius. Agents have actions
to move within the map and to attack opponent units, and receive a dense
common reward based on damage dealed and enemy units defeated, as well as
a large bonus reward for winning the combat scenario.

The main challenge of SMAC lies in the common rewards across all agents.
The credit assignment problem (Section 5.4.3) is particularly prominent in
this setting because the actions of agents can have long-term consequences
(such as destroying an opponent unit early on in an episode), and the common
reward makes it difficult to disentangle each agent’s contribution to the achieved
returns. This makes value decomposition methods, introduced in Section 9.5,
particularly suitable for SMAC tasks.

Each task in SMAC fixes the starting locations of all units within the task.
This lack in variability across episodes often leads to agents overfitting to the
specific configuration of the task, for example, by learning to act in a specific
order irrespective of the state. To address this issue of SMAC, Ellis et al. (2023)
propose SMACv2 with novel tasks that randomize the exact types of units
and their starting locations across episodes. This makes SMACv2 tasks more
challenging and requires agents to learn more generalizable policies.

“marl-book-main” — 2025/6/18 — 20:07 — page 328 — #357

328 Chapter 11

(a) Symmetric task (b) Asymmetric task

Figure 11.4: StarCraft Multi-Agent Challenge tasks in which two teams fight
against each other. One team is controlled by the agents (one agent per unit),
while the other team is controlled by a built-in AI. (a) A symmetric task in
which each team consists of the same number and type of units (3 “marines” on
each team). (b) An asymmetric task in which the teams consist of different unit
types.

One downside of both SMAC and SMACv2 is that they are based on StarCraft
II, which is a commercial game that still continues to receive updates. This
makes it difficult to reproduce results across different versions of the game,
and running the environment depends on the StarCraft II game, which comes
with considerable computational cost. Motivated by this downside, Michalski,
Christianos, and Albrecht (2023) propose the SMAClite environment, which
tries to closely mimic the SMAC tasks but does not rely on the StarCraft II
game. Thus, SMAClite is easier to setup and run, and is computationally cheap
in comparison. Michalski, Christianos, and Albrecht (2023) show that agents
trained on SMAClite tasks can be transferred to their SMAC counterparts with
some degradation in performance, indicating that SMAC is accurately but not
perfectly modeled by SMAClite.

11.3.4 Multi-Robot Warehouse

In the multi-robot warehouse (RWARE) environment (Christianos, Schäfer,
and Albrecht 2020; Papoudakis et al. 2021), agents control robots navigating
a grid-world warehouse and need to find, collect, and deliver shelves with
requested items. Tasks vary in the layout of the warehouse and number of
agents (Figure 11.5). Agents observe information about shelves and agents in
their close proximity, defined by an observation range that can be specified as
part of the task. Agents select actions to rotate to the left or right, move forward,
stay, or pick-up/drop-off load in their current location if possible. Agents can

“marl-book-main” — 2025/6/18 — 20:07 — page 329 — #358

Multi-Agent Environments 329

(a) Tiny, two agents (b) Small, two agents (c) Medium, four agents

Figure 11.5: Three multi-robot warehouse tasks with varying sizes and number
of agents (from Christianos, Schäfer, and Albrecht (2020)).

move underneath shelves as long as they carry no shelves. Agents only receive
individual positive rewards for successfully delivering shelves with requested
items to the goal locations. Upon each delivery, a new shelf without requested
items in the warehouse is randomly sampled and then requested.

The main challenge in RWARE tasks lies in its very sparse rewards. De-
livering shelves with requested items requires agents to execute very specific,
long sequences of actions to receive any non-zero reward. This makes the
sample-efficient approaches of sharing parameters and experiences, introduced
in Section 9.7, particularly well suited in this environments as demonstrated by
Christianos, Schäfer, and Albrecht (2020).

11.3.5 Google Research Football

The Google Research Football (GRF) environment (Kurach et al. 2020) pro-
vides a visually complex, physics-based 3D simulation of the game of football
(Figure 11.6). The environment supports a multi-agent interface with either two
agents controlling each of the teams, or agents controlling individual players
as part of a cooperating team competing against a team controlled by a fixed
built-in AI. The environment includes the full game of 11 vs. 11 football as well
as a set of reference tasks with progressively harder scenarios to evaluate spe-
cific situations, such as defending and scoring with a smaller number of players.
Agents can choose among sixteen discrete actions, including eight movement
actions, variations of passes, shots, dribbling, sprinting, and defensive actions.

“marl-book-main” — 2025/6/18 — 20:07 — page 330 — #359

330 Chapter 11

(a) 3 vs 1 with keeper (b) 11 vs 11

Figure 11.6: Two Google Research Football tasks.

There are two reward functions that can be chosen: (1) providing a reward of
+1 and −1 for scoring and conceding a goal, respectively, and (2) additionally
providing positive rewards for maintaining the ball and moving forward toward
the opponent’s goal region. Similar to reward functions, there are three modes
of observations including (1) a pixel-based observation showing a rendered
screen with a view of the pitch following the ball, a small global map as well
as a scoreboard, (2) a significantly smaller compressed global map showing
information about both teams, ball location, and highlighting the location of the
active player, and (3) a feature vector of 115 values encoding player locations,
ball possession, direction, game mode, active player, and more. Motivated by
the available settings and variations across prior MARL research in GRF, Song
et al. (2023) propose a unified settings for evaluating MARL algorithms in GRF
and benchmark MARL algorithms in several variants of the GRF environment.

The different modes of rewards, observations, and progressively harder sce-
narios provided by the environment make it a suitable benchmark to evaluate
complex multi-agent interactions for cooperative games. The environment can
also be used for two-player competitive games, with each agent controlling one
team, to investigate competitive self-play algorithms.

11.3.6 Hanabi

Hanabi is a cooperative turn-based card game for two to five players in which
each player (agent) holds a set of cards with numerical rank (1 to 5) and colors
(red, green, blue, yellow, white) drawn from a set of fifty cards in total. Players
need to build up ordered stacks of cards, with each stack containing cards of the
same color with increasing rank. The twist of Hanabi is that each player does
not see their own card but only sees the cards of all other players. Players take
actions in turns with the acting player having three possible actions: giving a
hint, playing a card from their hand, or discarding a card from their hand. When

“marl-book-main” — 2025/6/18 — 20:07 — page 331 — #360

Multi-Agent Environments 331

giving a hint, the acting player selects another player and is allowed to point out
all cards of that player’s hand which match a chosen rank or color. Each given
hint consumes an information token, with the entire team of players starting the
game with eight information tokens. Once all information tokens have been
used, players can no longer give hints. Information tokens can be recovered by
discarding a card (which also makes the active player draw a new card from
the deck) and by completing a stack of a color by placing the fifth and final
card on it. When a card is played, it is either successfully continuing one of the
five stacks or is unsuccessful, in which case the team loses a life. The game
ends when the team loses all their three lives, all five stacks were successfully
completed with cards of all five ranks in increasing order, or when the last card
of the deck has been drawn and each player took a final turn. The team receives
a reward for each successfully placed card, for final scores between 0 and 25.

Based on the partial observability of Hanabi, in which agents lack significant
information to guide their action selection, Bard et al. (2020) proposed Hanabi as
a challenging multi-agent environment with agents needing to adopt conventions
to successfully use their limited communication to cooperate. Agents need
to establish implicit communication beyond the limited resource of hints to
succeed. These properties make Hanabi an interesting challenge for cooperative
self-play algorithms, ad hoc teamwork (Mirsky et al. 2022), and communicating
and acting under imperfect information.

11.3.7 Overcooked

Overcooked is a video game in which players control chefs in a kitchen and
need to cooperate to prepare and serve dishes to customers. The game is played
on a grid-based map with a top-down view, with each player controlling one
chef. The chefs can move around the map, pick up ingredients, and interact
with tools such as chopping boards, pans, pots, and plates to prepare and deliver
dishes following given recipes.

There exist multiple implementations that adopt this popular video game
as an environment for cooperative MARL. Rother, Weisswange, and Peters
(2023) propose the Cooking Zoo environment (based on work by Wang, Wu,
et al. (2020)). The environment supports customization of tasks with varying
number of agents, level layouts, recipes, rewards, and observation spaces. At
each step, agents observe normalized relative positions of all agents, ingredients
and interactive tools such as pots and pans. Agents can decide to move in each
of the four cardinal directions or interact with the object in front of them, such as
placing a carried item on a counter, putting ingredients on a chopping board, or
chopping ingredients. The rewards received for each action can be customized

“marl-book-main” — 2025/6/18 — 20:07 — page 332 — #361

332 Chapter 11

Figure 11.7: An illustration of the Cooking Zoo environment.

by setting rewards for correct or incorrect completion of recipes, running out
of time, and progress toward the completion of the current recipe. Given its
customisability, Cooking Zoo allows the generation of a diverse range of tasks
that vary in their complexity. This feature makes the environment particularly
well suited to study the ability of MARL algorithms to generalize to new tasks.

Carroll et al. (2019) propose an alternative Overcooked environment with
similar observation and action spaces to Cooking Zoo. By default, only the
completion of recipes is rewarded, but the environment also offers an alternative
reward function including rewards for progress toward the completion of the
recipe. The main limitation of this environment, in contrast to Cooking Zoo, is
its support for only a limited set of recipes, five different layouts of maps, and a
lack of customization. However, it offers a publicly available dataset of human
gameplay that can be used for evaluation or training purposes.

11.4 Environment Collections

The environment collections in this section include many different environ-
ments, each representing a different game that can differ in properties such as
state/action representation and dynamics, full/partial observability and type of
observation, and reward density. Hence, the focus of these environment collec-
tions is to provide a unified representation and agent-environment interface for
the games, such that a MARL algorithm which is compatible with the interface
can be trained in each of its environments. These environment collections
typically also provide additional functionality, such as tools for analysis and the
creation of new environments, and even implementations of MARL algorithms.

“marl-book-main” — 2025/6/18 — 20:07 — page 333 — #362

Multi-Agent Environments 333

(a) Collab. Cooking (b) Clean-up (c) Chemistry (d) Territory

Figure 11.8: Four Melting Pot environments. (a) Collaborative Cooking: agents
need to cook a meal together. There exist several versions of the task that vary
in the layout of the kitchen and, thus, required cooperation and specialization of
agents. (b) Clean up: seven agents can collect apples in the environment to gain
reward. The rate of apples spawning is dependent on agents cleaning the nearby
river which leads to a social dilemma with competition between agents for
apples, and the need to clean up for long-term rewards. (c) Chemistry: agents
can carry molecules in the environment. When two molecules are brought close
to each other, they may react to synthesize new molecules and generate reward
according to a task-specific reaction graph. (d) Territory: agents need to capture
resources and eliminate opponent agents by shooting a beam.

While some of the previously introduced environments also include multiple
tasks, their tasks usually have the same transition function and observation spec-
ification. In contrast, the environments contained in the following collections
define a set of diverse games.

11.4.1 Melting Pot

Melting Pot (Leibo et al. 2021) is a collection of over fifty different multi-agent
tasks based on DeepMind Lab2D (Beattie et al. 2020) (see Figure 11.8 for
some examples). It focuses on two aspects of generalization for MARL: (1)
generalization across different tasks and (2) generalization across different
co-players. The first aspect is achieved by providing a diverse set of tasks,
including tasks with different numbers of agents, different objectives, and
different dynamics. The second aspect is achieved by providing a set of diverse
populations of pretrained agent policies for each task. During training, a so-
called focal population of agents is trained in a task. During evaluation, the
focal population is evaluated in the same task but with varying co-players: a
set of agents is sampled from the trained focal population, and some so-called
background agents are controlled by pretrained policies. Therefore, Melting Pot

“marl-book-main” — 2025/6/18 — 20:07 — page 334 — #363

334 Chapter 11

(a) Pong (b) Multiwalker (c) Pistonball

Figure 11.9: Three Petting Zoo environments. (a) Pong: two agents play against
each other in the classic Atari Pong game. (b) Multiwalker: three agents control
bipedal robots and need to learn to walk together without dropping the package
placed on their heads. (c) Pistonball: agents control pistons on the ground and
move the ball from the right side of the screen to the left.

evaluates the ability of trained focal agents to be able to zero-shot generalize to
the diverse behaviors of the background agents in the task.

Melting Pot tasks vary in their number of agents, their objectives ranging from
zero-sum competitive, fully cooperative common-reward, and mixed-objective
games. Tasks are partially observable with agents observing a partial 88× 88
RGB image of the environment. The action space is discrete with agents having
six movement actions in all tasks: move forward, backward, strafe left or right,
turn left or right, and potentially additional actions depending on the task.

11.4.2 OpenSpiel

OpenSpiel3 (Lanctot et al. 2019) is a collection of environments and MARL
algorithms, as well as other planning/search algorithms (such as MCTS, see
Section 9.8.1), with a focus on turn-based games, also known as “extensive-
form” games. A large diversity of classical turn-based games are provided
in OpenSpiel, which includes games such as Backgammon, Bridge, Chess,
Go, Poker, Hanabi (Section 11.3.6), and many more. The agent-environment
interface used in OpenSpiel is designed with a focus on turn-based games,
though it also supports simultanous-move games such as the game models
used in this book. The environments in OpenSpiel use a mix of full or partial
observability, and all environments specify discrete actions, observations, and
states. A challenge in many of the games is that long interaction sequences are
often required by the agents before they receive any rewards.

3. Spiel is the German word for game, pronounced “shpeel.”

“marl-book-main” — 2025/6/18 — 20:07 — page 335 — #364

Multi-Agent Environments 335

11.4.3 Petting Zoo

Petting Zoo (Terry et al. 2021) is a library for MARL research that contains a
large number of multi-agent environments, including multi-agent games based
on the Atari Learning Environment (Bellemare et al. 2013), various classic
games such as Connect Four, Go, and Texas Holdem, and continuous control
tasks (see Figure 11.9 for some examples). Petting Zoo also integrates the
multi-agent particle environment (Section 11.3.2). Petting Zoo covers a wide
range of learning problems by including environments with full and partial
observability, discrete and continuous actions, and dense and sparse rewards.
Besides providing a large set of tasks, Petting Zoo unifies the interface across
all its tasks, offers additional tools to customize the environment interface, and
integrates training with various MARL frameworks.

“marl-book-main” — 2025/6/18 — 20:07 — page 336 — #365

“marl-book-main” — 2025/6/18 — 20:07 — page 337 — #366

A Surveys on Multi-Agent Reinforcement Learning

At the time of writing this book, MARL is a highly active and fast-moving
field of research, which is evidenced by the many survey articles that have been
published in this area in recent years. To complement this book, we include
a list of survey articles that provide diverse overviews of MARL algorithms,
including many algorithms not covered in this book. The list is given in reverse
chronological order, dating back to the first survey of the field (to our knowl-
edge) published in 1999. Additional survey articles about particular application
domains of MARL exist but have been omitted here.

Changxi Zhu, Mehdi Dastani, Shihan Wang. 2024. “A Survey of Multi-Agent
Deep Reinforcement Learning with Communication.” In Autonomous Agents
and Multi-Agent Systems, vol. 38, no. 4.

Afshin Oroojlooy, Davood Hajinezhad. 2023. “A Review of Cooperative Multi-
Agent Deep Reinforcement Learning.” In Applied Intelligence, vol. 53, pp.
13677–13722.

Annie Wong, Thomas Bäck, Anna V. Kononova, Aske Plaat. 2023. “Deep
Multiagent Reinforcement Learning: Challenges and Directions.” In Artificial
Intelligence Review, vol. 56, pp. 5023–5056.

Sven Gronauer, Klaus Diepold. 2022. “Multi-Agent Deep Reinforcement
Learning: A Survey.” In Artificial Intelligence Review, vol. 55, pp. 895–943.

Kaiqing Zhang, Zhuoran Yang, Tamer Başar. 2021. “Multi-Agent Rein-
forcement Learning: A Selective Overview of Theories and Algorithms.” In
Handbook of Reinforcement Learning and Control.

“marl-book-main” — 2025/6/18 — 20:07 — page 338 — #367

338 Surveys on Multi-Agent Reinforcement Learning

Clément Moulin-Frier, Pierre-Yves Oudeyer. 2020. “Multi-Agent Reinforce-
ment Learning as a Computational Tool for Language Evolution Research:
Historical Context and Future Challenges.” In AAAI Spring Symposium: Chal-
lenges and Opportunities for Multi-Agent Reinforcement Learning.

Thanh Thi Nguyen, Ngoc Duy Nguyen, Saeid Nahavandi. 2020. “Deep Rein-
forcement Learning for Multiagent Systems: A Review of Challenges, Solutions
and Applications.” In IEEE Transactions on Cybernetics, vol. 50, no. 9, pp.
3826–3839.

Pablo Hernandez-Leal, Bilal Kartal, Matthew E. Taylor. 2019. “A Survey and
Critique of Multiagent Deep Reinforcement Learning.” In Autonomous Agents
and Multi-Agent Systems, vol. 33, no. 6, pp. 1–48.

Roxana Rădulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé. 2019.
“Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and
Survey.” In Autonomous Agents and Multi-Agent Systems, vol. 34, no. 10.

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, Stefano V. Al-
brecht. 2019. “Dealing with Non-Stationarity in Multi-Agent Deep Reinforce-
ment Learning.” In arXiv:1906.04737.

Felipe Leno Da Silva, Anna Helena Reali Costa. 2019. “A Survey on Transfer
Learning for Multiagent Reinforcement Learning Systems.” In Journal of Artifi-
cial Intelligence Research, vol. 64, pp. 645–703.

Karl Tuyls, Peter Stone. 2018. “Multiagent Learning Paradigms.” In Lecture
Notes in Artificial Intelligence, vol. 10767, pp. 3–21.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, Enrique Munoz de
Cote. 2017. “A Survey of Learning in Multiagent Environments: Dealing with
Non-Stationarity.” In arXiv:1707.09183.

Daan Bloembergen, Karl Tuyls, Daniel Hennes, Michael Kaisers. 2015. “Evo-
lutionary Dynamics of Multi-agent Learning: A Survey.” In Journal of Artificial
Intelligence Research, vol. 53, no. 1, pp. 659–697.

Karl Tuyls, Gerhard Weiss. 2012. “Multiagent Learning: Basics, Challenges,
and Prospects.” In AI Magazine, vol. 33, no. 3, pp. 41–52.

“marl-book-main” — 2025/6/18 — 20:07 — page 339 — #368

Surveys on Multi-Agent Reinforcement Learning 339

Laetitia Matignon, Guillaume J. Laurent, Nadine Le Fort-Piat. 2012. “Inde-
pendent Reinforcement Learners in Cooperative Markov Games: A Survey
Regarding Coordination Problems.” In The Knowledge Engineering Review, vol.
27, no. 1, pp. 1–31.

Ann Nowé, Peter Vrancx, Yann-Michaël De Hauwere . 2012. “Game Theory
and Multi-Agent Reinforcement Learning.” In Reinforcement Learning State-
of-the-Art, pp. 441–470.

Lucian Buşoniu, Robert Babuška, Bart De Schutter. 2010. “Multi-Agent Rein-
forcement Learning: An Overview.” In Studies in Computational Intelligence,
vol. 310, pp. 183–221.

Lucian Buşoniu, Robert Babuška, Bart De Schutter. 2008. “A Comprehensive
Survey of Multiagent Reinforcement Learning.” In IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, pp.
156–172.

Yoav Shoham, Rob Powers, Trond Grenager. 2007. “If Multi-Agent Learning
is the Answer, What is the Question?.” In Artificial Intelligence, vol. 171, no. 7,
pp. 365–377.

Karl Tuyls, Ann Nowé. 2005. “Evolutionary Game Theory and Multi-Agent
Reinforcement Learning.” In The Knowledge Engineering Review, vol. 20, no.
1, pp. 63–90.

Liviu Panait, Sean Luke. 2005. “Cooperative Multi-Agent Learning: The State
of the Art.” In Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3, pp.
387–434.

Pieter Jan ’t Hoen, Karl Tuyls, Liviu Panait, Sean Luke, J.A. La Poutré. 2005.
“An Overview of Cooperative and Competitive Multiagent Learning.” In Pro-
ceedings of the First International Workshop on Learning and Adaption in
Multi-Agent Systems.

Erfu Yang, Dongbing Gu. 2004. “Multiagent Reinforcement Learning for
Multi-Robot Systems: A Survey.” In Technical report.

“marl-book-main” — 2025/6/18 — 20:07 — page 340 — #369

340 Surveys on Multi-Agent Reinforcement Learning

Yoav Shoham, Rob Powers, Trond Grenager. 2003. “Multi-Agent Reinforce-
ment Learning: A Critical Survey.” In Technical report.

Eduardo Alonso, Mark D’inverno, Daniel Kudenko, Michael Luck, Jason No-
ble. 2001. “Learning in Multi-Agent Systems.” In The Knowledge Engineering
Review, vol. 16, no. 3.

Peter Stone, Manuela Veloso. 2000. “Multiagent Systems: A Survey from a
Machine Learning Perspective.” In Autonomous Robots, vol. 8, no. 3.

Sandip Sen, Gerhard Weiss. 1999. “Learning in Multiagent Systems.” In Multi-
agent Systems: A Modern Approach to Distributed Artificial Intelligence, pp.
259-298.

“marl-book-main” — 2025/6/18 — 20:07 — page 341 — #370

References

Albrecht, Stefano V., Jacob W. Crandall, and Subramanian Ramamoorthy. 2015. “An
empirical study on the practical impact of prior beliefs over policy types.” In Proceedings
of the 29th AAAI Conference on Artificial Intelligence, 1988–1994.

Albrecht, Stefano V., Jacob W. Crandall, and Subramanian Ramamoorthy. 2016. “Belief
and truth in hypothesised behaviours.” Artificial Intelligence 235:63–94.

Albrecht, Stefano V., and Subramanian Ramamoorthy. 2012. “Comparative evaluation of
multiagent learning algorithms in a diverse set of ad hoc team problems.” In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems, 349–
356.

Albrecht, Stefano V., and Subramanian Ramamoorthy. 2013. “A game-theoretic model
and best-response learning method for ad hoc coordination in multiagent systems.” In
Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems.

Albrecht, Stefano V., and Subramanian Ramamoorthy. 2016. “Exploiting causality for
selective belief filtering in dynamic Bayesian networks.” Journal of Artificial Intelligence
Research 55:1135–1178.

Albrecht, Stefano V., and Peter Stone. 2018. “Autonomous agents modelling other
agents: A comprehensive survey and open problems.” Artificial Intelligence 258:66–95.

Albrecht, Stefano V., Peter Stone, and Michael P. Wellman. 2020. “Special issue on
autonomous agents modelling other agents: Guest editorial.” Artificial Intelligence 285.

Amanatidis, Georgios, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé
Moulin, Alexandros A. Voudouris, and Xiaowei Wu. 2023. “Fair division of indivisible
goods: Recent progress and open questions.” Artificial Intelligence 322:103965.

Arora, Raman, Ofer Dekel, and Ambuj Tewari. 2012. “Online bandit learning against an
adaptive adversary: From regret to policy regret.” In Proceedings of the International
Conference on Machine Learning.

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. “Finite-time analysis of the
multiarmed bandit problem.” Machine Learning 47:235–256.

Aumann, Robert J. 1974. “Subjectivity and correlation in randomized strategies.”
Journal of Mathematical Economics 1 (1): 67–96.

“marl-book-main” — 2025/6/18 — 20:07 — page 342 — #371

342 References

Axelrod, Robert. 1984. The evolution of cooperation. Basic Books.

Axelrod, Robert, and William D. Hamilton. 1981. “The evolution of cooperation.”
Science 211 (4489): 1390–1396.

Balduzzi, David, Marta Garnelo, Yoram Bachrach, Wojciech M. Czarnecki, Julien
Pérolat, Max Jaderberg, and Thore Graepel. 2019. “Open-ended learning in symmetric
zero-sum games.” In Proceedings of the International Conference on Machine Learning,
434–443. PMLR.

Banerjee, Bikramjit, and Jing Peng. 2004. “Performance bounded reinforcement learn-
ing in strategic interactions.” In Proceedings of the AAAI Conference on Artificial
Intelligence, 4:2–7.

Bard, Nolan, Jakob Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis
Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain
Dunning, Shibl Mourad, Hugo Larochelle, Marc G. Bellemare, and Michael Bowling.
2020. “The Hanabi challenge: A new frontier for AI research.” In AIJ Special Issue on
Autonomous Agents Modelling Other Agents, vol. 280. Elsevier.

Barfuss, Wolfram, Jonathan F. Donges, and Jürgen Kurths. 2019. “Deterministic limit
of temporal difference reinforcement learning for stochastic games.” Physical Review E
99 (4): 043305.

Beattie, Charles, Thomas Köppe, Edgar A. Duéñez-Guzmán, and Joel Z. Leibo. 2020.
“Deepmind lab2d.” arXiv preprint:2011.07027.

Bellemare, Marc G., Will Dabney, and Rémi Munos. 2017. “A distributional perspective
on reinforcement learning.” In Proceedings of the International Conference on Machine
Learning, 449–458. PMLR.

Bellemare, Marc G., Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. “The
arcade learning environment: An evaluation platform for general agents.” Journal of
Artificial Intelligence Research 47:253–279.

Bellman, Richard. 1957. Dynamic Programming. Princeton University Press.

Berner, Christopher, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
J ózefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique
Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas
Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. 2019.
“Dota 2 with large scale deep reinforcement learning.” arXiv preprint:1912.06680.

Bettini, Matteo, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. 2022.
“VMAS: A vectorized multi-agent simulator for collective robot learning.” International
Symposium on Distributed Autonomous Robotic Systems.

Bitansky, Nir, Omer Paneth, and Alon Rosen. 2015. “On the cryptographic hardness of
finding a Nash equilibrium.” In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, 1480–1498. IEEE.

Blackwell, David. 1956. “An analog of the minimax theorem for vector payoffs.” Pacific
Journal of Mathematics 6:1–8.

“marl-book-main” — 2025/6/18 — 20:07 — page 343 — #372

References 343

Bloembergen, Daan, Karl Tuyls, Daniel Hennes, and Michael Kaisers. 2015. “Evolu-
tionary dynamics of multi-agent learning: A survey.” Journal of Artificial Intelligence
Research 53:659–697.

Böhmer, Wendelin, Vitaly Kurin, and Shimon Whiteson. 2020. “Deep coordination
graphs.” In Proceedings of the International Conference on Machine Learning, 980–991.
PMLR.

Bowling, Michael, and Manuela Veloso. 2002. “Multiagent learning using a variable
learning rate.” Artificial Intelligence 136 (2): 215–250.

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.

Brown, George W. 1951. “Iterative solution of games by fictitious play.” In Proceedings
of the Conference on Activity Analysis of Production and Allocation, Cowles Commission
Monograph 13, 374–376.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. “Language models are few-shot learners.” In Advances in Neural Information
Processing Systems, 33:1877–1901.

Bruns, Bryan Randolph. 2015. “Names for games: Locating 2×2 games.” Games 6 (4):
495–520.

Camerer, Colin F. 2011. Behavioral Game Theory: Experiments in Strategic Interaction.
Princeton University Press.

Campbell, Murray, A. Joseph Hoane Jr., and Feng-Hsiung Hsu. 2002. “Deep Blue.”
Artificial Intelligence 134 (1-2): 57–83.

Caragiannis, Ioannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah,
and Junxing Wang. 2019. “The unreasonable fairness of maximum Nash welfare.” ACM
Transactions on Economics and Computation (TEAC) 7 (3): 1–32.

Carroll, Micah, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel,
and Anca Dragan. 2019. “On the utility of learning about humans for human-AI
coordination.” In Advances in Neural Information Processing Systems.

Castellini, Jacopo, Sam Devlin, Frans A. Oliehoek, and Rahul Savani. 2021. “Dif-
ference rewards policy gradients.” In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems.

Cesa-Bianchi, Nicolo, and Gábor Lugosi. 2003. “Potential-based algorithms in on-line
prediction and game theory.” Machine Learning 51:239–261.

Chakraborty, Doran, and Peter Stone. 2014. “Multiagent learning in the presence of
memory-bounded agents.” Autonomous Agents and Multi-Agent Systems 28:182–213.

“marl-book-main” — 2025/6/18 — 20:07 — page 344 — #373

344 References

Chalkiadakis, Georgios, and Craig Boutilier. 2003. “Coordination in multiagent
reinforcement learning: A Bayesian approach.” In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems, 709–716.

Chang, Yu-Han. 2007. “No regrets about no-regret.” Artificial Intelligence 171 (7):
434–439.

Chen, Xi, and Xiaotie Deng. 2006. “Settling the complexity of two-player Nash
equilibrium.” In 47th Annual IEEE Symposium on Foundations of Computer Science,
261–272. IEEE.

Cho, Kyunghyun, Bart Van Merriënboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. “Learning phrase representations
using RNN encoder-decoder for statistical machine translation.” In Proceedings of
Conference on Empirical Methods in Natural Language Processing, 1724–1734.

Choudhuri, Arka Rai, Pavel Hubáček, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen,
and Guy N. Rothblum. 2019. “Finding a Nash equilibrium is no easier than breaking
Fiat-Shamir.” In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, 1103–1114.

Christianos, Filippos, Georgios Papoudakis, and Stefano V. Albrecht. 2023. “Pareto
actor-critic for equilibrium selection in multi-agent reinforcement learning.” Transactions
on Machine Learning Research.

Christianos, Filippos, Georgios Papoudakis, Arrasy Rahman, and Stefano V. Albrecht.
2021. “Scaling multi-agent reinforcement learning with selective parameter sharing.” In
Proceedings of the International Conference on Machine Learning.

Christianos, Filippos, Lukas Schäfer, and Stefano V. Albrecht. 2020. “Shared experience
actor-critic for multi-agent reinforcement learning.” In Advances in Neural Information
Processing Systems.

Claus, Caroline, and Craig Boutilier. 1998. “The dynamics of reinforcement learning in
cooperative multiagent systems.” In Proceedings of the 15th National Conference on
Artificial Intelligence, 746–752.

Conitzer, Vincent, and Tuomas Sandholm. 2007. “AWESOME: A general multiagent
learning algorithm that converges in self-play and learns a best response against stationary
opponents.” Machine Learning 67 (1-2): 23–43.

Conitzer, Vincent, and Tuomas Sandholm. 2008. “New complexity results about Nash
equilibria.” Games and Economic Behavior 63 (2): 621–641.

Crandall, Jacob W. 2014. “Towards minimizing disappointment in repeated games.”
Journal of Artificial Intelligence Research 49:111–142.

Crites, Robert H., and Andrew G. Barto. 1998. “Elevator group control using multiple
reinforcement learning agents.” Machine Learning 33 (2-3): 235–262.

Cybenko, George. 1989. “Approximation by superpositions of a sigmoidal function.”
Mathematics of Control, Signals and Systems 2 (4): 303–314.

Dasgupta, Partha, and Eric Maskin. 1986. “The existence of equilibrium in discontinuous
economic games, I: Theory.” The Review of Economic Studies 53 (1): 1–26.

“marl-book-main” — 2025/6/18 — 20:07 — page 345 — #374

References 345

Daskalakis, Constantinos, Dylan J. Foster, and Noah Golowich. 2020. “Independent
policy gradient methods for competitive reinforcement learning.” In Advances in Neural
Information Processing Systems, 33:5527–5540.

Daskalakis, Constantinos, Paul W. Goldberg, and Christos H. Papadimitriou. 2006. “The
complexity of computing a Nash equilibrium.” In Symposium on Theory of Computing,
71–78.

Daskalakis, Constantinos, Paul W. Goldberg, and Christos H. Papadimitriou. 2009. “The
complexity of computing a Nash equilibrium.” SIAM Journal on Computing 39 (1):
195–259.

de Farias, Daniela, and Nimrod Megiddo. 2003. “How to combine expert (and novice)
advice when actions impact the environment.” In Advances in Neural Information
Processing Systems.

Debreu, Gerard. 1952. “A social equilibrium existence theorem.” Proceedings of the
National Academy of Sciences 38 (10): 886–893.

Dekel, Eddie, Drew Fudenberg, and David K. Levine. 2004. “Learning to play Bayesian
games.” Games and Economic Behavior 46 (2): 282–303.

Ding, Dongsheng, Chen-Yu Wei, Kaiqing Zhang, and Mihailo Jovanovic. 2022. “Inde-
pendent policy gradient for large-scale Markov potential games: Sharper rates, function
approximation, and game-agnostic convergence.” In Proceedings of the International
Conference on Machine Learning, 5166–5220. PMLR.

Dinneweth, Joris, Abderrahmane Boubezoul, René Mandiau, and Stéphane Espié. 2022.
“Multi-agent reinforcement learning for autonomous vehicles: A survey.” Autonomous
Intelligent Systems 2 (1): 27.

Doshi, Prashant, Piotr Gmytrasiewicz, and Edmund Durfee. 2020. “Recursively mod-
eling other agents for decision making: A research perspective.” Artificial Intelligence
279:103202.

Drouvelis, Michalis. 2021. Social preferences: An introduction to behavioural
economics and experimental research. Agenda Publishing.

Duchi, John, Elad Hazan, and Yoram Singer. 2011. “Adaptive subgradient methods for
online learning and stochastic optimization.” Journal of machine learning research 12
(7): 2121–2159.

El Hihi, Salah, and Yoshua Bengio. 1995. “Hierarchical recurrent neural networks for
long-term dependencies.” In Advances in Neural Information Processing Systems, vol. 8.

Ellis, Benjamin, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. 2023. “SMACv2: An improved benchmark for co-
operative multi-agent reinforcement learning.” In Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks.

Elo, Arpad. 1960. “The USCF Rating System.” Chess Life XIV (13).

Espeholt, Lasse, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski.
2020. “SEED RL: Scalable and efficient deep-RL with accelerated central inference.” In
Conference on Learning Representations.

“marl-book-main” — 2025/6/18 — 20:07 — page 346 — #375

346 References

Espeholt, Lasse, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray
Kavukcuoglu. 2018. “IMPALA: Scalable distributed deep-RL with importance weighted
actor-learner architectures.” In Proceedings of the International Conference on Machine
Learning, 1407–1416. PMLR.

Etessami, Kousha, and Mihalis Yannakakis. 2010. “On the complexity of Nash equilibria
and other fixed points.” SIAM Journal on Computing 39 (6): 2531–2597.

Fan, Ky. 1952. “Fixed-point and minimax theorems in locally convex topological linear
spaces.” Proceedings of the National Academy of Sciences 38 (2): 121–126.

Fan, Ziming, Nianli Peng, Muhang Tian, and Brandon Fain. 2023. “Welfare and
fairness in multi-objective reinforcement learning.” In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems, 1991–1999.

Farina, Gabriele, Tommaso Bianchi, and Tuomas Sandholm. 2020. “Coarse correla-
tion in extensive-form games.” In Proceedings of the AAAI Conference on Artificial
Intelligence, 34:1934–1941.

Filar, Jerzy, and Koos Vrieze. 2012. Competitive Markov decision processes. Springer
Science & Business Media.

Fink, A. M. 1964. “Equilibrium in a stochastic n-person game.” Journal of Science of
the Hiroshima University 28 (1): 89–93.

Fleurbaey, Marc, and François Maniquet. 2011. A Theory of Fairness and Social Welfare.
Cambridge University Press.

Fleuret, François. 2023. The Little Book of Deep Learning.

Foerster, Jakob, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson.
2016. “Learning to communicate with deep multi-agent reinforcement learning.” In
Advances in Neural Information Processing Systems, vol. 29.

Foerster, Jakob, Richard Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel,
and Igor Mordatch. 2018. “Learning with opponent-learning awareness.” In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems.

Foerster, Jakob, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. 2018. “Counterfactual multi-agent policy gradients.” In AAAI conference on
artificial intelligence, vol. 32. 1.

Foerster, Jakob, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip H. S.
Torr, Pushmeet Kohli, and Shimon Whiteson. 2017. “Stabilising experience replay for
deep multi-agent reinforcement learning.” In Proceedings of the International Conference
on Machine Learning, 1146–1155. PMLR.

Forges, Francoise. 1986. “An approach to communication equilibria.” Econometrica:
Journal of the Econometric Society, 1375–1385.

Fortunato, Meire, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband,
Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles
Blundell, and Shane Legg. 2018. “Noisy networks for exploration.” In Conference on
Learning Representations.

“marl-book-main” — 2025/6/18 — 20:07 — page 347 — #376

References 347

Foster, Dean P., and H. Peyton Young. 2001. “On the impossibility of predicting the
behavior of rational agents.” Proceedings of the National Academy of Sciences 98 (22):
12848–12853.

Fudenberg, Drew, and David K. Levine. 1995. “Consistency and cautious fictitious
play.” Journal of Economic Dynamics and Control 19 (5-7): 1065–1089.

Fudenberg, Drew, and David K. Levine. 1998. The Theory of Learning in Games. MIT
Press.

Fukushima, Kunihiko, and Sei Miyake. 1982. “Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position.” Pattern recognition
15 (6): 455–469.

Garg, Sanjam, Omkant Pandey, and Akshayaram Srinivasan. 2016. “Revisiting the cryp-
tographic hardness of finding a Nash equilibrium.” In Annual International Cryptology
Conference, 579–604. Springer.

Gilboa, Itzhak, and Eitan Zemel. 1989. “Nash and correlated equilibria: Some
complexity considerations.” Games and Economic Behavior 1 (1): 80–93.

Glicksberg, Irving L. 1952. “A further generalization of the Kakutani fixed point theorem
with application to Nash points points.” Proceedings of the American Mathematical
Society, no. 38, 170–174.

Gmytrasiewicz, Piotr J., and Prashant Doshi. 2005. “A framework for sequential
planning in multiagent settings.” Journal of Artificial Intelligence Research 24 (1): 49–
79.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press.

Greenwald, Amy, and Keith Hall. 2003. “Correlated Q-learning.” In Proceedings of the
International Conference on Machine Learning, 3:242–249.

Greenwald, Amy, and Amir Jafari. 2003. “A general class of no-regret learning algo-
rithms and game-theoretic equilibria.” In Learning Theory and Kernel Machines, 2–12.
Springer.

Guestrin, Carlos, Daphne Koller, and Ronald Parr. 2001. “Multiagent planning with
factored MDPs.” In Advances in Neural Information Processing Systems, 1523–1530.
MIT Press.

Guestrin, Carlos, Michail G. Lagoudakis, and Ronald Parr. 2002. “Coordinated re-
inforcement learning.” In Proceedings of the International Conference on Machine
Learning, 227–234.

Guo, Shangmin, Yi Ren, Kory Mathewson, Simon Kirby, Stefano V. Albrecht, and
Kenny Smith. 2022. “Expressivity of emergent languages is a trade-off between
contextual complexity and unpredictability.” In International Conference on Learning
Representations.

Gupta, Jayesh K., Maxim Egorov, and Mykel Kochenderfer. 2017. “Cooperative multi-
agent control using deep reinforcement learning.” In Autonomous Agents and Multiagent
Systems Workshops, Revised Selected Papers, 10642:66–83. Lecture Notes in Computer
Science. Springer.

“marl-book-main” — 2025/6/18 — 20:07 — page 348 — #377

348 References

Hansen, Eric A., Daniel S. Bernstein, and Shlomo Zilberstein. 2004. “Dynamic program-
ming for partially observable stochastic games.” In Proceedings of the AAAI Conference
on Artificial Intelligence, 4:709–715.

Harsanyi, John C. 1967. “Games with incomplete information played by “Bayesian”
players. Part I. The basic model.” Management Science 14 (3): 159–182.

Harsanyi, John C., and Reinhard Selten. 1988. A General Theory of Equilibrium
Selection in Games. MIT Press.

Hart, Sergiu, and Andreu Mas-Colell. 2000. “A simple adaptive procedure leading to
correlated equilibrium.” Econometrica 68 (5): 1127–1150.

Hart, Sergiu, and Andreu Mas-Colell. 2001. “A general class of adaptive strategies.”
Journal of Economic Theory 98 (1): 26–54.

Hausknecht, Matthew J., and Peter Stone. 2015. “Deep recurrent Q-learning for partially
observable MDPs.” In AAAI Fall Symposium Series, 29–37. AAAI Press.

Heinrich, Johannes, Marc Lanctot, and David Silver. 2015. “Fictitious self-play in
extensive-form games.” In Proceedings of the International Conference on Machine
Learning, 805–813.

Hessel, Matteo, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. 2018.
“Rainbow: Combining improvements in deep reinforcement learning.” In Thirty-second
AAAI conference on artificial intelligence.

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky. 2012. Neural networks for
machine learning lecture 6A overview of mini-batch gradient descent, 8.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long short-term memory.” Neural
Computation 9 (8): 1735–1780.

Hofbauer, Josef, and William H. Sandholm. 2002. “On the global convergence of
stochastic fictitious play.” Econometrica 70 (6): 2265–2294.

Hornik, Kurt. 1991. “Approximation capabilities of multilayer feedforward networks.”
Neural Networks 4 (2): 251–257.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer feedforward
networks are universal approximators.” Neural Networks 2 (5): 359–366.

Howard, Ronald A. 1960. Dynamic programming and Markov processes. John Wiley.

Hu, Junling, and Michael P. Wellman. 2003. “Nash Q-learning for general-sum stochastic
games.” Journal of Machine Learning Research 4:1039–1069.

Hu, Shuyue, Chin-wing Leung, and Ho-fung Leung. 2019. “Modelling the dynamics of
multiagent Q-learning in repeated symmetric games: A mean field theoretic approach.”
In Advances in Neural Information Processing Systems, vol. 32.

Iqbal, Shariq, and Fei Sha. 2019. “Actor-attention-critic for multi-agent reinforcement
learning.” In Proceedings of the International Conference on Machine Learning. PMLR.

Jaderberg, Max, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Anto-
nio García Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham
Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver,

“marl-book-main” — 2025/6/18 — 20:07 — page 349 — #378

References 349

Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel. 2019. “Human-level perfor-
mance in 3D multiplayer games with population-based reinforcement learning.” Science
364 (6443): 859–865.

Jaderberg, Max, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. 2017. “Population based training
of neural networks.” arXiv preprint:1711.09846.

Jafferjee, Taher, Juliusz Ziomek, Tianpei Yang, Zipeng Dai, Jianhong Wang, Matthew
E. Taylor, Kun Shao, Jun Wang, and David H. Mguni. 2023. “Taming multi-agent
reinforcement learning with estimator variance reduction.” arXiv preprint:2209.01054.

Jarrett, Kevin, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. 2009.
“What is the best multi-stage architecture for object recognition?” In 2009 IEEE 12th
International Conference on Computer Vision, 2146–2153. IEEE.

Jiang, Jiechuan, Chen Dun, Tiejun Huang, and Zongqing Lu. 2020. “Graph convolutional
reinforcement learning.” In International Conference on Learning Representations.

Jordan, James S. 1991. “Bayesian learning in normal form games.” Games and Economic
Behavior 3 (1): 60–81.

Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ramin-
der Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey
Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel
Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu
Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana
Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray
Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter
Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. “In-datacenter performance analysis of
a tensor processing unit.” In Proceedings of the 44th Annual International Symposium
on Computer Architecture, 1–12.

Kaelbling, Leslie Pack, Michael L. Littman, and Anthony R. Cassandra. 1998. “Planning
and acting in partially observable stochastic domains.” Artificial Intelligence 101 (1-2):
99–134.

Kalai, Ehud, and Ehud Lehrer. 1993. “Rational learning leads to Nash equilibrium.”
Econometrica 61 (5): 1019–1045.

Kianercy, Ardeshir, and Aram Galstyan. 2012. “Dynamics of Boltzmann Q learning in
two-player two-action games.” Physical Review E 85 (4): 041145.

Kilgour, D. Marc, and Niall M. Fraser. 1988. “A taxonomy of all ordinal 2×2 games.”
Theory and Decision 24 (2): 99–117.

“marl-book-main” — 2025/6/18 — 20:07 — page 350 — #379

350 References

Kim, Dong Ki, Miao Liu, Matthew D. Riemer, Chuangchuang Sun, Marwa Abdulhai,
Golnaz Habibi, Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan P. How. 2021. “A
policy gradient algorithm for learning to learn in multiagent reinforcement learning.” In
Proceedings of the International Conference on Machine Learning.

Kingma, Diederik P., and Jimmy Ba. 2015. “Adam: A method for stochastic
optimization.” In International Conference on Learning Representations.

Kocsis, Levente, and Csaba Szepesvári. 2006. “Bandit based Monte-Carlo planning.” In
European Conference on Machine Learning, 282–293. Springer.

Kok, Jelle R., and Nikos Vlassis. 2005. “Using the max-plus algorithm for multiagent
decision making in coordination graphs.” In Proceedings of the Seventeenth Belgium-
Netherlands Conference on Artificial Intelligence, 359–360.

Krnjaic, Aleksandar, Raul D. Steleac, Jonathan D. Thomas, Georgios Papoudakis, Lukas
Schäfer, Andrew Wing Keung To, Kuan-Ho Lao, Murat Cubuktepe, Matthew Haley,
Peter Börsting, and Stefano V. Albrecht. 2024. “Scalable multi-agent reinforcement
learning for warehouse logistics with robotic and human co-workers.” In IEEE/RSJ
International Conference on Intelligent Robots and Systems.

Kuba, Jakub Grudzien, Muning Wen, Linghui Meng, Shangding Gu, Haifeng Zhang,
David H. Mguni, Jun Wang, and Yaodong Yang. 2021. “Settling the variance of
multi-agent policy gradients.” In Advances in Neural Information Processing Systems,
34:13458–13470.

Kurach, Karol, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse
Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet,
and Sylvain Gelly. 2020. “Google research football: A novel reinforcement learning
environment.” In AAAI Conference on Artificial Intelligence, 34:4501–4510. 04.

Lanctot, Marc, Edward Lockhart, Jean-Baptiste Lespiau, Vin ícius Flores Zambaldi,
Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls,
Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan
Faulkner, János Kramár, Bart de Vylder, Brennan Saeta, James Bradbury, David Ding,
Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward
Hughes, Ivo Danihelka, and Jonah Ryan-Davis. 2019. “OpenSpiel: A framework for
reinforcement learning in games.” arXiv preprint:1908.09453.

Lanctot, Marc, Vinícius Flores Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl
Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. “A unified game-theoretic
approach to multiagent reinforcement learning.” In Advances in Neural Information
Processing Systems, vol. 30.

Lattimore, Tor, and Csaba Szepesvári. 2020. Bandit Algorithms. Cambridge University
Press.

Laurent, Guillaume J., Laëtitia Matignon, and Nadine Le Fort-Piat. 2011. “The world of
independent learners is not Markovian.” International Journal of Knowledge-based and
Intelligent Engineering Systems 15 (1): 55–64.

LeCun, Yann, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne Hubbard, and Lawrence D. Jackel. 1989. “Backpropagation applied to
handwritten zip code recognition.” Neural Computation 1 (4): 541–551.

“marl-book-main” — 2025/6/18 — 20:07 — page 351 — #380

References 351

Lehrer, Ehud. 2003. “A wide range no-regret theorem.” Games and Economic Behavior
42 (1): 101–115.

Leibo, Joel Z., Edgar A. Duéñez-Guzmán, Alexander Sasha Vezhnevets, John P. Agapiou,
Peter Sunehag, Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore
Graepel. 2021. “Scalable evaluation of multi-agent reinforcement learning with melting
pot.” In Proceedings of the International Conference on Machine Learning, 6187–6199.
PMLR.

Leonardos, Stefanos, Will Overman, Ioannis Panageas, and Georgios Piliouras. 2022.
“Global convergence of multi-agent policy gradient in Markov potential games.” In
International Conference on Learning Representations.

Leonardos, Stefanos, and Georgios Piliouras. 2022. “Exploration-exploitation in
multi-agent learning: Catastrophe theory meets game theory.” Artificial Intelligence
304:103653.

Leshno, Moshe, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. 1993. “Multi-
layer feedforward networks with a nonpolynomial activation function can approximate
any function.” Neural Networks 6 (6): 861–867.

Leslie, David S., and Edmund J. Collins. 2006. “Generalised weakened fictitious play.”
Games and Economic Behavior 56 (2): 285–298.

Letcher, Alistair, Jakob Foerster, David Balduzzi, Tim Rocktäschel, and Shimon White-
son. 2019. “Stable opponent shaping in differentiable games.” In Conference on
Learning Representations.

Levy, David, and Monroe Newborn. 1982. “How computers play chess.” In All About
Chess and Computers: Chess and Computers and More Chess and Computers. Springer.

Lin, Tsungnan, Bill G. Horne, Peter Tino, and C. Lee Giles. 1996. “Learning long-
term dependencies in NARX recurrent neural networks.” IEEE Transactions on Neural
Networks 7 (6): 1329–1338.

Littman, Michael L. 1994. “Markov games as a framework for multi-agent reinforcement
learning.” In Proceedings of the International Conference on Machine Learning, 157–
163.

Littman, Michael L., and Csaba Szepesvári. 1996. “A generalized reinforcement-
learning model: Convergence and applications.” In Proceedings of the International
Conference on Machine Learning, 96:310–318.

Liu, Siqi, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and
Thore Graepel. 2019. “Emergent coordination through competition.” In International
Conference on Learning Representations.

Lowe, Ryan, Yi I. Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. 2017.
“Multi-agent actor-critic for mixed cooperative-competitive environments.” In Advances
in Neural Information Processing Systems, vol. 30.

Lu, Christopher, Timon Willi, Christian A. Schroeder de Witt, and Jakob Foerster. 2022.
“Model-free opponent shaping.” In Proceedings of the International Conference on
Machine Learning.

“marl-book-main” — 2025/6/18 — 20:07 — page 352 — #381

352 References

Lyu, Xueguang, Andrea Baisero, Yuchen Xiao, Brett Daley, and Christopher Amato.
2023. “On centralized critics in multi-agent reinforcement learning.” Journal of Artificial
Intelligence Research 77:295–354.

Marris, Luke, Ian Gemp, and Georgios Piliouras. 2023. “Equilibrium-invariant
embedding, metric space, and fundamental set of 2× 2 normal-form games.” arXiv
preprint:2304.09978.

Marris, Luke, Paul Muller, Marc Lanctot, Karl Tuyls, and Thore Graepel. 2021.
“Multi-agent training beyond zero-sum with correlated equilibrium meta-solvers.” In
Proceedings of the International Conference on Machine Learning, 7480–7491. PMLR.

Matignon, Laëtitia, Guillaume J. Laurent, and Nadine Le Fort-Piat. 2007. “Hysteretic
Q-learning: An algorithm for decentralized reinforcement learning in cooperative multi-
agent teams.” In IEEE/RSJ International Conference on Intelligent Robots and Systems,
64–69. IEEE.

McAleer, Stephen, John B. Lanier, Roy Fox, and Pierre Baldi. 2020. “Pipeline PSRO: A
scalable approach for finding approximate Nash equilibria in large games.” In Advances
in Neural Information Processing Systems, 33:20238–20248.

McMahan, H. Brendan, Geoffrey J. Gordon, and Avrim Blum. 2003. “Planning
in the presence of cost functions controlled by an adversary.” In Proceedings of the
International Conference on Machine Learning, 536–543.

Meta Fundamental AI Research Diplomacy Team, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray,
Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath, Minae Kwon, Adam
Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya Renduchintala, Stephen
Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David Wu, Hugh Zhang,
and Markus Zijlstra. 2022. “Human-level play in the game of Diplomacy by combining
language models with strategic reasoning.” Science 378 (6624): 1067–1074.

Michalski, Adam, Filippos Christianos, and Stefano V. Albrecht. 2023. “SMAClite: A
lightweight environment for multi-agent reinforcement learning.” In Workshop on Multi-
agent Sequential Decision Making Under Uncertainty at the International Conference
on Autonomous Agents and Multiagent Systems.

Mihatsch, Oliver, and Ralph Neuneier. 2002. “Risk-sensitive reinforcement learning.”
Machine Learning 49:267–290.

Mirsky, Reuth, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke,
Mohan Sridharan, Peter Stone, and Stefano V. Albrecht. 2022. “A survey of ad hoc
teamwork research.” In European Conference on Multi-Agent Systems.

Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. “Asyn-
chronous methods for deep reinforcement learning.” In Proceedings of the International
Conference on Machine Learning, 1928–1937. PMLR.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

“marl-book-main” — 2025/6/18 — 20:07 — page 353 — #382

References 353

“Human-level control through deep reinforcement learning.” Nature 518 (7540): 529–
533.

Morad, Steven, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Pro-
rok. 2023. “POPGym: Benchmarking partially observable reinforcement learning.” In
Conference on Learning Representations.

Mordatch, Igor, and Pieter Abbeel. 2018. “Emergence of grounded compositional
language in multi-agent populations.” In AAAI Conference on Artificial Intelligence,
vol. 32. 1.

Moulin, Hervé. 2004. Fair Division and Collective Welfare. MIT Press.

Moulin, Hervé, and J.-P. Vial. 1978. “Strategically zero-sum games: The class of games
whose completely mixed equilibria cannot be improved upon.” International Journal of
Game Theory 7:201–221.

Mozer, Michael C. 1991. “Induction of multiscale temporal structure.” In Advances in
Neural Information Processing Systems, vol. 4.

Mullainathan, Sendhil, and Richard H. Thaler. 2000. Behavioral Economics. National
Bureau of Economic Research, Working Paper 7948.

Muller, Paul, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Pérolat, Siqi Liu,
Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever,
Nicolas Heess, Thore Graepel, and Rémi Munos. 2020. “A generalized training approach
for multiagent learning.” In International Conference on Learning Representations.

Nachbar, John H. 1997. “Prediction, optimization, and learning in repeated games.”
Econometrica 65 (2): 275–309.

Nachbar, John H. 2005. “Beliefs in Repeated Games.” Econometrica 73 (2): 459–480.

Nair, Vinod, and Geoffrey E. Hinton. 2010. “Rectified linear units improve restricted
Boltzmann machines.” In Proceedings of the International Conference on Machine
Learning.

Nash, John F. 1950. “Equilibrium points in n-person games.” Proceedings of the
National Academy of Sciences 36 (1): 48–49.

Nesterov, Yurii E. 1983. “A method for solving the convex programming problem with
convergence rate O(1/k2).” In Dokl. Akad. Nauk SSSR, 269:543–547.

Nisan, Noam, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. 2007. Algorithmic
Game Theory. Cambridge University Press.

Nyarko, Yaw. 1998. “Bayesian learning and convergence to Nash equilibria without
common priors.” Economic Theory 11 (3): 643–655.

Oliehoek, Frans A. 2010. “Value-based planning for teams of agents in stochastic
partially observable environments.” PhD diss., January.

Oliehoek, Frans A., and Christopher Amato. 2016. A Concise Introduction to
Decentralized POMDPs. Springer.

Oliehoek, Frans A., Shimon Whiteson, and Matthijs T. J. Spaan. 2013. “Approxi-
mate solutions for factored Dec-POMDPs with many agents.” In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems, 563–570.

“marl-book-main” — 2025/6/18 — 20:07 — page 354 — #383

354 References

Oliehoek, Frans A., Stefan J. Witwicki, and Leslie Pack Kaelbling. 2012. “Influence-
based abstraction for multiagent systems.” In Proceedings of the AAAI Conference on
Artificial Intelligence, edited by Jörg Hoffmann and Bart Selman, 1422–1428. AAAI
Press.

Omidshafiei, Shayegan, Jason Pazis, Christopher Amato, Jonathan P. How, and John
Vian. 2017. “Deep decentralized multi-task multi-agent reinforcement learning un-
der partial observability.” In Proceedings of the International Conference on Machine
Learning, 2681–2690. PMLR.

Osborne, Martin J., and Ariel Rubinstein. 1994. A Course in Game Theory. MIT Press.

Owen, Guillermo. 2013. Game Theory (4th edition). Emerald Group Publishing.

Palmer, Gregory. 2020. Independent learning approaches: Overcoming multi-agent
learning pathologies in team-games. The University of Liverpool (United Kingdom).

Palmer, Gregory, Rahul Savani, and Karl Tuyls. 2019. “Negative update intervals in deep
multi-agent reinforcement learning.” In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems.

Palmer, Gregory, Karl Tuyls, Daan Bloembergen, and Rahul Savani. 2018. “Lenient
multi-agent deep reinforcement learning.” In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems.

Panait, Liviu, Karl Tuyls, and Sean Luke. 2008. “Theoretical advantages of lenient
learners: An evolutionary game theoretic perspective.” The Journal of Machine Learning
Research 9:423–457.

Papadimitriou, Christos H. 1994. “On the complexity of the parity argument and other
inefficient proofs of existence.” Journal of Computer and System Sciences 48 (3): 498–
532.

Papoudakis, Georgios, Filippos Christianos, and Stefano V. Albrecht. 2021. “Agent
modelling under partial observability for deep reinforcement learning.” In Advances in
Neural Information Processing Systems.

Papoudakis, Georgios, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht.
2021. “Benchmarking multi-agent deep reinforcement learning algorithms in cooperative
tasks.” In Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks.

Peake, Ashley, Joe McCalmon, Benjamin Raiford, Tongtong Liu, and Sarra Alqahtani.
2020. “Multi-agent reinforcement learning for cooperative adaptive cruise control.” In
IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 15–22.
IEEE.

Peng, Bei, Tabish Rashid, Christian A. Schroeder de Witt, Pierre-Alexandre Kamienny,
Philip H. S. Torr, Wendelin Böhmer, and Shimon Whiteson. 2021. “FACMAC: Factored
multi-agent centralised policy gradients.” In Advances in Neural Information Processing
Systems.

Perea, Andrés. 2012. Epistemic game theory: Reasoning and choice. Cambridge
University Press.

“marl-book-main” — 2025/6/18 — 20:07 — page 355 — #384

References 355

Pérolat, Julien, Bart de Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vin-
cent de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas Anthony, Stephen
McAleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas Gruslys, Aleksandra
Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers, Toby Pohlen, Tom Eccles,
Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot, Shayegan Omidshafiei,
Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Rémi Munos, David Silver,
Satinder Singh, Demis Hassabis, and Karl Tuyls. 2022. “Mastering the game of Stratego
with model-free multiagent reinforcement learning.” Science 378 (6623): 990–996.

Polyak, Boris T. 1964. “Some methods of speeding up the convergence of iteration
methods.” USSR Computational Mathematics and Mathematical Physics 4 (5): 1–17.

Powers, Rob, and Yoav Shoham. 2004. “New criteria and a new algorithm for learning
in multi-agent systems.” In Advances in Neural Information Processing Systems, vol. 17.

Powers, Rob, and Yoav Shoham. 2005. “Learning against opponents with bounded
memory.” In Proceedings of the International Joint Conference on Artificial Intelligence,
5:817–822.

Premack, David, and Guy Woodruff. 1978. “Does the chimpanzee have a theory of
mind?” Behavioral and Brain Sciences 1 (4): 515–526.

Prince, Simon J. D. 2023. Understanding Deep Learning. MIT Press.

Puterman, Martin L. 2014. Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons.

Qiu, Dawei, Jianhong Wang, Junkai Wang, and Goran Strbac. 2021. “Multi-agent
reinforcement learning for automated peer-to-peer energy trading in double-side auction
market.” In Proceedings of the International Joint Conference on Artificial Intelligence,
2913–2920.

Rabinowitz, Neil, Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Ali Eslami,
and Matthew Botvinick. 2018. “Machine theory of mind.” In Proceedings of the
International Conference on Machine Learning.

Rahman, Arrasy, Ignacio Carlucho, Niklas Höpner, and Stefano V. Albrecht. 2023.
“A general learning framework for open ad hoc teamwork using graph-based policy
learning.” Journal of Machine Learning Research 24 (298): 1–74.

Rahman, Arrasy, Elliot Fosong, Ignacio Carlucho, and Stefano V. Albrecht. 2023.
“Generating teammates for training robust ad hoc teamwork agents via best-response
diversity.” Transactions on Machine Learning Research.

Rahman, Arrasy, Niklas Höpner, Filippos Christianos, and Stefano V. Albrecht. 2021.
“Towards open ad hoc teamwork using graph-based policy learning.” In Proceedings of
the International Conference on Machine Learning.

Rapoport, Anatol, and Melvin Guyer. 1966. “A taxonomy of 2× 2 games.” General
Systems: Yearbook of the Society for General Systems Research 11:203–214.

Rashid, Tabish, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020. “Weighted
QMIX: Expanding monotonic value function factorisation for deep multi-agent
reinforcement learning.” In Advances in Neural Information Processing Systems, vol. 33.

“marl-book-main” — 2025/6/18 — 20:07 — page 356 — #385

356 References

Rashid, Tabish, Mikayel Samvelyan, Christian A. Schroeder de Witt, Gregory Farquhar,
Jakob Foerster, and Shimon Whiteson. 2018. “QMIX: Monotonic value function factori-
sation for deep multi-agent reinforcement learning.” In Proceedings of the International
Conference on Machine Learning, 4295–4304. PMLR.

Robinson, David, and David Goforth. 2005. The topology of the 2×2 games: A new
periodic table. Vol. 3. Psychology Press.

Robinson, Julia. 1951. “An iterative method of solving a game.” Annals of Mathematics,
296–301.

Rodrigues Gomes, Eduardo, and Ryszard Kowalczyk. 2009. “Dynamic analysis of
multiagent Q-learning with ε-greedy exploration.” In Proceedings of the International
Conference on Machine Learning, 369–376.

Roesch, Martin, Christian Linder, Roland Zimmermann, Andreas Rudolf, Andrea
Hohmann, and Gunther Reinhart. 2020. “Smart grid for industry using multi-agent
reinforcement learning.” Applied Sciences 10 (19): 6900.

Rother, David, Thomas Weisswange, and Jan Peters. 2023. “Disentangling interaction
using maximum entropy reinforcement learning in multi-agent systems.” In European
Conference on Artificial Intelligence.

Roughgarden, Tim. 2016. Twenty Lectures on Algorithmic Game Theory. Cambridge
University Press.

Ruder, Sebastian. 2016. “An overview of gradient descent optimization algorithms.”
arXiv preprint:1609.04747.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning
representations by back-propagating errors.” Nature 323 (6088): 533–536.

Samvelyan, Mikayel, Tabish Rashid, Christian A. Schroeder de Witt, Gregory Farquhar,
Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster,
and Shimon Whiteson. 2019. “The StarCraft multi-agent challenge.” In Workshop on
Deep Reinforcement Learning at the Conference on Neural Information Processing
Systems.

Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver. 2016. “Prioritized
experience replay.” In International Conference on Learning Representations.

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
Timothy P. Lillicrap, and David Silver. 2020. “Mastering Atari, Go, chess and shogi by
planning with a learned model.” Nature 588 (7839): 604–609.

Schroeder de Witt, Christian, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk,
Philip HS Torr, Mingfei Sun, and Shimon Whiteson. 2020. “Is independent learning all
you need in the StarCraft multi-agent challenge?” arXiv preprint:2011.09533.

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. “Trust region policy optimization.” In Proceedings of the International Conference
on Machine Learning, 1889–1897. PMLR.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
“Proximal policy optimization algorithms.” arXiv preprint:1707.06347.

“marl-book-main” — 2025/6/18 — 20:07 — page 357 — #386

References 357

Selten, Reinhard. 1988. “Reexamination of the perfectness concept for equilibrium
points in extensive games.” In Models of Strategic Rationality, 1–31. Springer.

Sen, Amartya. 2018. Collective Choice and Social Welfare. Harvard University Press.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua. 2016. “Safe, multi-agent,
reinforcement learning for autonomous driving.” arXiv preprint:1610.03295.

Shapley, Lloyd S. 1953. “Stochastic games.” Proceedings of the National Academy of
Sciences of the United States of America 39 (10): 1095.

Shavandi, Ali, and Majid Khedmati. 2022. “A multi-agent deep reinforcement learn-
ing framework for algorithmic trading in financial markets.” Expert Systems with
Applications 208:118124.

Shoham, Yoav, and Kevin Leyton-Brown. 2008. Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press.

Shoham, Yoav, Rob Powers, and Trond Grenager. 2007. “If multi-agent learning is the
answer, what is the question?” Artificial Intelligence 171 (7): 365–377.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. 2016. “Mastering the game of Go with deep neural networks and
tree search.” Nature 529 (7587): 484–489.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
P. Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. “A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play.” Science 362
(6419): 1140–1144.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel,
and Demis Hassabis. 2017. “Mastering the game of Go without human knowledge.”
Nature 550 (7676): 354–359.

Singh, Satinder, Michael Kearns, and Yishay Mansour. 2000. “Nash convergence of
gradient dynamics in general-sum games.” In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, 541–548.

Sion, Maurice, and Philip Wolfe. 1957. “On a game without a value.” Contributions to
the Theory of Games 3:299–306.

Smith, Max Olan, Thomas Anthony, and Michael P. Wellman. 2021. “Iterative empirical
game solving via single policy best response.” In International Conference on Learning
Representations.

Solan, Eilon, and Nicolas Vieille. 2002. “Correlated equilibrium in stochastic games.”
Games and Economic Behavior 38 (2): 362–399.

Son, Kyunghwan, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi.
2019. “QTRAN: Learning to factorize with transformation for cooperative multi-agent

“marl-book-main” — 2025/6/18 — 20:07 — page 358 — #387

358 References

reinforcement learning.” In Proceedings of the International Conference on Machine
Learning, 5887–5896.

Song, Yan, He Jiang, Haifeng Zhang, Zheng Tian, Weinan Zhang, and Jun Wang. 2023.
“Boosting studies of multi-agent reinforcement learning on Google research football
environment: The past, present, and future.” arXiv preprint:2309.12951.

Stone, Peter, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. 2010. “Ad hoc
autonomous agent teams: Collaboration without pre-coordination.” In Twenty-Fourth
AAAI Conference on Artificial Intelligence.

Sukhbaatar, Sainbayar, Arthur Szlam, and Rob Fergus. 2016. “Learning multiagent
communication with backpropagation.” In Advances in Neural Information Processing
Systems, 29:2244–2252.

Sunehag, Peter, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius
Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl
Tuyls, and Thore Graepel. 2018. “Value-decomposition networks for cooperative multi-
agent learning.” In Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems, 2085–2087.

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement learning: An introduction
(2nd edition). MIT Press.

Tan, Ming. 1993. “Multi-agent reinforcement learning: Independent vs. cooperative
agents.” In Proceedings of the International Conference on Machine Learning, 330–337.

Terry, Jordan K., Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari,
Ryan Sullivan, Luis S. Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-
Vicente, Niall Williams, Yashas Lokesh, and Praveen Ravi. 2021. “PettingZoo: Gym
for multi-agent reinforcement learning.” In Advances in Neural Information Processing
Systems, 34:15032–15043.

Tesauro, Gerald. 1994. “TD-Gammon, a self-teaching backgammon program, achieves
master-level play.” Neural Computation 6 (2): 215–219.

Thrun, Sebastian, and Anton Schwartz. 1993. “Issues in using function approxima-
tion for reinforcement learning.” In Connectionist Models Summer School, 255–263.
Psychology Press.

Tumer, Kagan, and Adrian K. Agogino. 2007. “Distributed agent-based air traffic flow
management.” In International joint conference on Autonomous agents and multiagent
systems, 1–8.

Tuyls, Karl, Julien Pérolat, Marc Lanctot, Edward Hughes, Richard Everett, Joel Z.
Leibo, Csaba Szepesvári, and Thore Graepel. 2020. “Bounds and dynamics for empirical
game theoretic analysis.” Autonomous Agents and Multi-Agent Systems 34:1–30.

van der Pol, Elise. 2016. “Deep reinforcement learning for coordination in traffic light
control.” PhD diss., August.

van Hasselt, Hado. 2010. “Double Q-learning.” In Advances in Neural Information
Processing Systems, vol. 23.

“marl-book-main” — 2025/6/18 — 20:07 — page 359 — #388

References 359

van Hasselt, Hado, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and
Joseph Modayil. 2018. “Deep reinforcement learning and the deadly triad.” arXiv
preprint:1812.02648.

van Hasselt, Hado, Arthur Guez, and David Silver. 2016. “Deep reinforcement learning
with double Q-learning.” In AAAI Conference on Artificial Intelligence, vol. 30.

Vasilev, Bozhidar, Tarun Gupta, Bei Peng, and Shimon Whiteson. 2021. “Semi-
on-policy training for sample efficient multi-agent policy gradients.” In Adaptive and
Learning Agents Workshop at the International Conference on Autonomous Agents and
Multiagent Systems.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. “Attention is all you need.” In
Advances in Neural Information Processing Systems, vol. 30.

Vinyals, Oriol, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev,
Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre,
Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Ré mi
Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom Le Paine, Çaglar Gülç ehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring,
Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy
P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. 2019.
“Grandmaster level in StarCraft II using multi-agent reinforcement learning.” Nature
575 (7782): 350–354.

Vohra, Rakesh V., and Michael P. Wellman. 2007. “Foundations of multi-agent learning:
Introduction to the special issue.” Artificial Intelligence 171 (7): 363–364.

von Neumann, John. 1928. “Zur Theorie der Gesellschaftsspiele.” Mathematische
Annalen 100 (1): 295–320.

von Neumann, John, and Oskar Morgenstern. 1944. Theory of Games and Economic
Behavior. Princeton University Press.

von Stengel, Bernhard, and Françoise Forges. 2008. “Extensive-form correlated equilib-
rium: Definition and computational complexity.” Mathematics of Operations Research
33 (4): 1002–1022.

Vu, Thuc, Rob Powers, and Yoav Shoham. 2006. “Learning against multiple opponents.”
In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems, 752–759.

Walliser, Bernard. 1988. “A simplified taxonomy of 2×2 games.” Theory and Decision
25:163–191.

Wang, Jianhao, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021. “QPLEX:
Duplex dueling multi-agent Q-learning.” In Conference on Learning Representations.

Wang, Rose E., Sarah A. Wu, James A. Evans, Joshua B. Tenenbaum, David C. Parkes,
and Max Kleiman-Weiner. 2020. “Too many cooks: Coordinating multi-agent collab-
oration through inverse planning.” In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems.

“marl-book-main” — 2025/6/18 — 20:07 — page 360 — #389

360 References

Wang, Rundong, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich. 2020.
“Learning efficient multi-agent communication: An information bottleneck approach.” In
Proceedings of the International Conference on Machine Learning, 9908–9918. PMLR.

Wang, Ziyu, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando
de Freitas. 2016. “Dueling network architectures for deep reinforcement learning.” In
Proceedings of the International Conference on Machine Learning, 1995–2003. PMLR.

Watkins, Christopher J.C.H., and Peter Dayan. 1992. “Q-learning.” Machine Learning 8
(3): 279–292.

Wei, Chen-Yu, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. 2021. “Last-
iterate convergence of decentralized optimistic gradient descent/ascent in infinite-horizon
competitive Markov games.” In Conference on Learning Theory, 4259–4299. PMLR.

Wellman, Michael P. 2006. “Methods for empirical game-theoretic analysis.” In
Proceedings of the AAAI Conference on Artificial Intelligence, 980:1552–1556.

Wellman, Michael P., Amy Greenwald, and Peter Stone. 2007. Autonomous bidding
agents: Strategies and lessons from the trading agent competition. MIT Press.

Wen, Ying, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. 2019. “Probabilistic
recursive reasoning for multi-agent reinforcement learning.” In Conference on Learning
Representations.

Williams, Ronald J. 1992. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning.” Machine Learning 8 (3): 229–256.

Wolpert, David H, and Kagan Tumer. 2002. “Optimal payoff functions for members of
collectives.” In Modeling Complexity in Economic and Social Systems, 355–369. World
Scientific.

Wooldridge, Michael. 2009. An Introduction to MultiAgent Systems (2nd edition). John
Wiley & Sons.

Wunder, Michael, Michael L. Littman, and Monica Babes. 2010. “Classes of multiagent
Q-learning dynamics with ϵ-greedy exploration.” In Proceedings of the International
Conference on Machine Learning.

Yang, Yaodong, Guangyong Chen, Weixun Wang, Xiaotian Hao, Jianye Hao, and Pheng-
Ann Heng. 2022. “Transformer-based working memory for multiagent reinforcement
learning with action parsing.” In Advances in Neural Information Processing Systems.

Young, H. Peyton. 2004. Strategic Learning and Its Limits. Oxford University Press.

Zeiler, Matthew D. 2012. “ADADELTA: An adaptive learning rate method.” arXiv
preprint:1212.5701.

Zhang, Kaiqing, Zhuoran Yang, and Tamer Basar. 2019. “Policy optimization provably
converges to Nash equilibria in zero-sum linear quadratic games.” In Advances in Neural
Information Processing Systems, vol. 32.

Zhou, Meng, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. 2020. “Learn-
ing implicit credit assignment for cooperative multi-agent reinforcement learning.” In
Advances in Neural Information Processing Systems, 33:11853–11864.

“marl-book-main” — 2025/6/18 — 20:07 — page 361 — #390

References 361

Zhou, Ming, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan
Zhang, Montgomery Alban, Iman Fadakar, Zheng Chen, Aurora Chongxi Huang, Ying
Wen, Kimia Hassanzadeh, Daniel Graves, Dong Chen, Zhengbang Zhu, Nhat Nguyen,
Mohamed Elsayed, Kun Shao, Sanjeevan Ahilan, Baokuan Zhang, Jiannan Wu, Zhen-
gang Fu, Kasra Rezaee, Peyman Yadmellat, Mohsen Rohani, Nicolas Perez Nieves,
Yihan Ni, Seyedershad Banijamali, Alexander Cowen Rivers, Zheng Tian, Daniel
Palenicek, Haitham Bou Ammar, Hongbo Zhang, Wulong Liu, Jianye Hao, and Jun
Wang. 2020. “SMARTS: Scalable multi-agent reinforcement learning training school
for autonomous driving.” In Proceedings of the 4th Conference on Robot Learning.

Zhou, Wei, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin, and Wanchen Ge. 2022.
“Multi-agent reinforcement learning for cooperative lane changing of connected and
autonomous vehicles in mixed traffic.” Autonomous Intelligent Systems 2 (1): 5.

Zinkevich, Martin. 2003. “Online convex programming and generalized infinitesimal
gradient ascent.” In Proceedings of the International Conference on Machine Learning,
928–936.

Zinkevich, Martin, Amy Greenwald, and Michael L. Littman. 2005. “Cyclic equilibria
in Markov games.” In Advances in Neural Information Processing Systems, vol. 18.

Zinkevich, Martin, Michael Johanson, Michael Bowling, and Carmelo Piccione. 2007.
“Regret minimization in games with incomplete information.” In Advances in Neural
Information Processing Systems, 20:1729–1736.

Zintgraf, Luisa, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann.
2021. “Deep interactive Bayesian reinforcement learning via meta-learning.” In Pro-
ceedings of the International Conference on Autonomous Agents and Multiagent
Systems.

“marl-book-main” — 2025/6/18 — 20:07 — page 362 — #391

“marl-book-main” — 2025/6/18 — 20:07 — page 363 — #392

Index

ϵ-Nash equilibrium, 70
ϵ-greedy, 34, 187, 195
N-step returns, 203, 205

absorbing states, 26
action, 2, 20, 22
action-value functions, 27
activation function, 167
actor, 202
actor-critic, 202
Adam optimizer, 174
advantage, 204
advantage actor-critic, 204
agent, 3, 20
agent modeling, 127, 267
algorithm self-play, 111
AlphaStar, 298
AlphaZero, 288
aristocrat utility, 238
asynchronous advantage actor-critic, 204
asynchronous training, 214

backpropagation, 170, 174
backward pass, 175
batch gradient descent, 172
batch size, 172
Bayesian learning, 134
belief state, 53
belief state filtering, 54
Bellman equation, 27
Bellman optimality equations, 28
best responses, 65
bias-variance tradeoff, 203, 204

Boltzmann policy, 195
bootstrapping, 30, 187

catastrophic forgetting, 190
central learning, 95, 220
central Q-learning, 95
centralized critic, 233, 312
centralized execution, 220
centralized training, 220
centralized training and decentralized

execution, 222
centralized training and execution, 220
coarse correlated equilibrium, 73
common-reward, 45
communication, 55
conditional regret, 83
conditional regret matching, 151
conflict games, 321
constant-sum, 45
contraction mapping, 30, 118
convolution, 176
convolutional neural networks, 176
coordination graph, 243
correlated equilibrium, 71
correlated Q-learning, 124
counterfactual multi-agent policy gradient,

239
critic, 202

deadly triad, 187
Dec-POMDP, 51
decentralized execution, 220
decentralized training, 220

“marl-book-main” — 2025/6/18 — 20:07 — page 364 — #393

364 Index

decentralized training and execution, 221
deep feedforward networks, 165
deep learning, 161
deep Q-learning, 186
deep Q-networks, 192
difference rewards, 108, 238
discount factor, 25
discounted return, 25
double deep Q-networks, 194
dynamic programming, 29

empirical distribution, 93
entropy regularization, 207
environment, 2, 20, 305, 319
episode, 6, 22, 89
equilibrium selection, 69, 104, 119, 240
evaluation returns, 36
expected return, 25
experience sharing, 278
exploration-exploitation dilemma, 21

factored multi-agent centralized policy
gradient, 266

fairness-optimal, 79
feedforward neural networks, 165
fictitious play, 128
forward pass, 175
full history, 62
full observability, 48, 215
fully connected neural networks, 165
function approximation, 161, 187

game value, 66
games, 43
gated recurrent units, 180
general-sum, 45
generalization, 162, 187
generalized infinitesimal gradient ascent,
150

goals, 3
gradient descent, 171
gradient-based optimizer, 170, 315
greedy, 31
greedy policy improvements, 29

hidden dimension, 166
hidden state, 179, 216

history, 91
homogeneous, 274
hyperparameter search, 318
hysteretic Q-learning, 226

i.i.d. data, 189
importance sampling, 208, 226, 279
independent advantage actor-critic, 228
independent deep Q-networks, 224, 310
independent learning, 97, 224
independent Q-learning, 97
independent REINFORCE, 226
individual-global-max, 244
infinitesimal gradient ascent, 143
initial state distribution, 22
iterative policy evaluation, 29

joint action, 6, 45
joint policy, 62
joint-action history, 46
joint-action learning, 119, 267
joint-action value functions, 119
joint-action values, 95, 236
joint-observation history, 63

learning, 90
learning curves, 36, 316
learning rate, 33, 172
leniency, 226
linear function approximation, 163
long short-term memory cells, 180
loss function, 170

Markov decision process, 22
Markov games, 48
Markov property, 23
matrix games, 45, 321
maxmin, 66
mean squared error, 170
mini-batch gradient descent, 172
minimax, 65
minimax Q-learning, 121
minmax, 66
mixed-play, 111
momentum, 174
Monte Carlo tree search, 282
moving target problem, 104, 187

“marl-book-main” — 2025/6/18 — 20:07 — page 365 — #394

Index 365

multi-agent credit assignment, 106, 238,
246

multi-agent policy gradient theorem, 231
multi-armed bandit problem, 24
multi-layer perceptrons, 165

Nash equilibrium, 68
Nash Q-learning, 123
Nash social welfare, 79
neural network layer, 165
neural networks, 165, 307
neural unit, 166
no-conflict games, 239, 321
no-regret, 81
no-regret learners, 151
non-repeated normal-form game, 47
non-stationarity, 102, 187, 225, 231
normal-form game, 44
normative solution, 127

observation, 2, 20, 49, 216, 223
observation function, 51
observation history, 24, 51, 216, 223
off-equilibrium paths, 76
off-policy, 35, 184, 187, 208, 224, 237
on-policy, 35, 199, 208, 226, 237
on-policy distribution, 198
opponent shaping, 134, 274
optimal policy, 26
optimal value function, 27

padding, 177
parameter sharing, 276, 309
Pareto actor-critic, 240
Pareto frontier, 78
Pareto optimality, 76
partial observability, 24, 49, 216, 223
partially observable Markov decision

processes, 24
partially observable stochastic game, 49
policy, 3, 20
policy gradient algorithms, 140, 195, 230
policy gradient theorem, 197
policy improvement theorem, 31
policy iteration, 29
policy reconstruction, 127, 271
policy self-play, 111

policy space response oracles, 292
POMDP, 24, 52
pooling, 178
population-based training, 291
PPAD, 84
prioritized fictitious self-play, 299
proximal policy optimization, 207

Q-learning, 35, 184
QMIX, 249

receptive field, 177
rectified linear unit, 167
recurrent neural networks, 179, 216, 314
recursive reasoning, 273
regret, 81, 151
regret matching, 151
REINFORCE, 200
reinforcement learning, 1, 20
repeated normal-form game, 46
replay buffer, 190, 224, 248
representation-based agent modeling, 272
representational sparsity, 167
return, 20, 24
reward, 3, 20, 22
reward function, 3, 22
reward hypothesis, 20
reward-dominant, 105
risk-dominant, 105

Sarsa, 33
self-play, 110, 286
shared experience actor-critic, 279
social welfare and fairness, 78
softmax, 197
solution concepts, 61
state, 2, 20, 22, 215, 223, 232
state distribution, 198
state transition probability function, 22
state-value function, 26
stationary equilibrium, 125
stochastic games, 47
stochastic gradient descent, 172
stride, 177
strongly homogeneous agents, 275
supervised learning, 21, 171
synchronous data collection, 211

“marl-book-main” — 2025/6/18 — 20:07 — page 366 — #395

366 Index

target network, 188
targeted optimality and safety, 112
temporal credit assignment, 106
temporal-difference learning, 32
theory of mind, 273
total search problems, 84
trust region, 207
trust region policy optimization, 207
type-based reasoning, 134

unconditional regret, 83
unconditional regret matching, 151
undiscounted returns, 38
universal approximation theorem, 166
unsupervised learning, 21
update target, 33
upper confidence bound, 195, 284

value, 26, 64
value decomposition, 244, 313
value decomposition networks, 248, 313
value factorization, 243
value functions, 26
value iteration, 32
value of information, 134
value overstimation, 193
vanilla gradient descent, 171

weakly homogeneous agents, 275
weighted QMIX, 265
welfare-optimal, 79
win or learn fast, 145
WoLF-IGA, 145
WoLF-PHC, 147

zero-sum, 45, 286

	Summary of Notation
	List of Figures
	Preface
	1 Introduction
	1.1 Multi-Agent Systems
	1.2 Multi-Agent Reinforcement Learning
	1.3 Application Examples
	1.3.1 Multi-Robot Warehouse Management
	1.3.2 Competitive Play in Board Games and Video Games
	1.3.3 Autonomous Driving
	1.3.4 Automated Trading in Electronic Markets

	1.4 Challenges of MARL
	1.5 Agendas of MARL
	1.6 Book Contents and Structure

	I Foundations of Multi-Agent Reinforcement Learning
	2 Reinforcement Learning
	2.1 General Definition
	2.2 Markov Decision Processes
	2.3 Expected Discounted Returns and Optimal Policies
	2.4 Value Functions and Bellman Equation
	2.5 Dynamic Programming
	2.6 Temporal-Difference Learning
	2.7 Evaluation with Learning Curves
	2.8 Equivalence of R(s,a,s') and R(s,a)
	2.9 Summary

	3 Games: Models of Multi-Agent Interaction
	3.1 Normal-Form Games
	3.2 Repeated Normal-Form Games
	3.3 Stochastic Games
	3.4 Partially Observable Stochastic Games
	3.4.1 Belief States and Filtering

	3.5 Modeling Communication
	3.6 Knowledge Assumptions in Games
	3.7 Dictionary: Reinforcement Learning Game Theory
	3.8 Summary

	4 Solution Concepts for Games
	4.1 Joint Policy and Expected Return
	4.2 Best Response
	4.3 Minimax
	4.3.1 Minimax Solution via Linear Programming

	4.4 Nash Equilibrium
	4.5 -Nash Equilibrium
	4.6 (Coarse) Correlated Equilibrium
	4.6.1 Correlated Equilibrium via Linear Programming

	4.7 Conceptual Limitations of Equilibrium Solutions
	4.8 Pareto Optimality
	4.9 Social Welfare and Fairness
	4.10 No-Regret
	4.11 The Complexity of Computing Equilibria
	4.11.1 PPAD Complexity Class
	4.11.2 Computing -Nash Equilibrium Is PPAD-Complete

	4.12 Summary

	5 Multi-Agent Reinforcement Learning in Games: First Steps and Challenges
	5.1 General Learning Process
	5.2 Convergence Types
	5.3 Single-Agent RL Reductions
	5.3.1 Central Learning
	5.3.2 Independent Learning
	5.3.3 Example: Level-Based Foraging

	5.4 Challenges of MARL
	5.4.1 Non-Stationarity
	5.4.2 Equilibrium Selection
	5.4.3 Multi-Agent Credit Assignment
	5.4.4 Scaling to Many Agents

	5.5 What Algorithms Do Agents Use?
	5.5.1 Self-Play
	5.5.2 Mixed-Play

	5.6 Summary

	6 Multi-Agent Reinforcement Learning: Foundational Algorithms
	6.1 Dynamic Programming for Games: Value Iteration
	6.2 Temporal-Difference Learning for Games: Joint-Action Learning
	6.2.1 Minimax Q-Learning
	6.2.2 Nash Q-Learning
	6.2.3 Correlated Q-Learning
	6.2.4 Limitations of Joint-Action Learning

	6.3 Agent Modeling
	6.3.1 Fictitious Play
	6.3.2 Joint-Action Learning with Agent Modeling
	6.3.3 Bayesian Learning and Value of Information

	6.4 Policy-Based Learning
	6.4.1 Gradient Ascent in Expected Reward
	6.4.2 Learning Dynamics of Infinitesimal Gradient Ascent
	6.4.3 Win or Learn Fast
	6.4.4 Win or Learn Fast with Policy Hill Climbing
	6.4.5 Generalized Infinitesimal Gradient Ascent

	6.5 No-Regret Learning
	6.5.1 Unconditional and Conditional Regret Matching
	6.5.2 Convergence of Regret Matching

	6.6 Summary

	II Multi-Agent Deep Reinforcement Learning: Algorithms and Practice
	7 Deep Learning
	7.1 Function Approximation for Reinforcement Learning
	7.2 Linear Function Approximation
	7.3 Feedforward Neural Networks
	7.3.1 Neural Unit
	7.3.2 Activation Functions
	7.3.3 Composing a Network from Layers and Units

	7.4 Gradient-Based Optimization
	7.4.1 Loss Function
	7.4.2 Gradient Descent
	7.4.3 Backpropagation

	7.5 Convolutional and Recurrent Neural Networks
	7.5.1 Learning from Images—Exploiting Spatial Relationships in Data
	7.5.2 Learning from Sequences with Memory

	7.6 Summary

	8 Deep Reinforcement Learning
	8.1 Deep Value Function Approximation
	8.1.1 Deep Q-Learning—What Can Go Wrong?
	8.1.2 Moving Target Problem
	8.1.3 Breaking Correlations
	8.1.4 Putting It All Together: Deep Q-Networks
	8.1.5 Beyond Deep Q-Networks

	8.2 Policy Gradient Algorithms
	8.2.1 Advantages of Learning a Policy
	8.2.2 Policy Gradient Theorem
	8.2.3 REINFORCE: Monte Carlo Policy Gradient
	8.2.4 Actor-Critic Algorithms
	8.2.5 A2C: Advantage Actor-Critic
	8.2.6 PPO: Proximal Policy Optimization
	8.2.7 Policy Gradient Algorithms in Practice
	8.2.8 Concurrent Training of Policies

	8.3 Observations, States, and Histories in Practice
	8.4 Summary

	9 Multi-Agent Deep Reinforcement Learning
	9.1 Training and Execution Modes
	9.1.1 Centralized Training and Execution
	9.1.2 Decentralized Training and Execution
	9.1.3 Centralized Training with Decentralized Execution

	9.2 Notation for Multi-Agent Deep Reinforcement Learning
	9.3 Independent Learning
	9.3.1 Independent Value-Based Learning
	9.3.2 Independent Policy Gradient Methods
	9.3.3 Example: Deep Independent Learning in a LargeTask

	9.4 Multi-Agent Policy Gradient Algorithms
	9.4.1 Multi-Agent Policy Gradient Theorem
	9.4.2 Centralized Critics
	9.4.3 Centralized Action-Value Critics
	9.4.4 Counterfactual Action-Value Estimation
	9.4.5 Equilibrium Selection with Centralized Action-Value Critics

	9.5 Value Decomposition in Common-Reward Games
	9.5.1 Individual-Global-Max Property
	9.5.2 Linear Value Decomposition
	9.5.3 Monotonic Value Decomposition
	9.5.4 Value Decomposition in Practice
	9.5.5 Beyond Monotonic Value Decomposition

	9.6 Agent Modeling with Neural Networks
	9.6.1 Joint-Action Learning with Deep Agent Models
	9.6.2 Learning Representations of Agent Policies

	9.7 Environments with Homogeneous Agents
	9.7.1 Parameter Sharing
	9.7.2 Experience Sharing

	9.8 Policy Self-Play in Zero-Sum Games
	9.8.1 Monte Carlo Tree Search
	9.8.2 Self-Play MCTS
	9.8.3 Self-Play MCTS with Deep Neural Networks: AlphaZero

	9.9 Population-Based Training
	9.9.1 Policy Space Response Oracles
	9.9.2 Convergence of PSRO
	9.9.3 Grandmaster Level in StarCraft II: as

	9.10 Summary

	10 Multi-Agent Deep Reinforcement Learning in Practice
	10.1 The Agent-Environment Interface
	10.2 MARL Neural Networks in PyTorch
	10.2.1 Seamless Parameter Sharing Implementation
	10.2.2 Defining the Models: An Example with IDQN

	10.3 Centralized Value Functions
	10.4 Value Decomposition
	10.5 Practical Tips for MARL Algorithms
	10.5.1 Stacking Time Steps vs. Recurrent Network vs. Neither
	10.5.2 Standardizing Rewards
	10.5.3 Centralized Optimization

	10.6 Presentation of Experimental Results
	10.6.1 Learning Curves
	10.6.2 Hyperparameter Search

	11 Multi-Agent Environments
	11.1 Criteria for Choosing Environments
	11.2 Structurally Distinct 2 2 Matrix Games
	11.2.1 No-Conflict Games
	11.2.2 Conflict Games

	11.3 Complex Environments
	11.3.1 Level-Based Foraging
	11.3.2 Multi-Agent Particle Environment
	11.3.3 StarCraft Multi-Agent Challenge
	11.3.4 Multi-Robot Warehouse
	11.3.5 Google Research Football
	11.3.6 Hanabi
	11.3.7 Overcooked

	11.4 Environment Collections
	11.4.1 Melting Pot
	11.4.2 OpenSpiel
	11.4.3 Petting Zoo

	A Surveys on Multi-Agent Reinforcement Learning
	References
	Index

